Ultra-small scale-free geometric networks

We consider a family of long-range percolation models (G p ) p>0 on ℤ d that allow dependence between edges and have the following connectivity properties for p ∈ (1/d, ∞): (i) the degree distribution of vertices in G p has a power-law distribution; (ii) the graph distance between points x and y is bounded by a multiple of log pd log pd | x - y | with probability 1 - o(1); and (iii) an adversary can delete a relatively small number of nodes from G p (ℤ d ∩ [0, n] d ), resulting in two large, disconnected subgraphs.

[1]  Noam Berger A lower bound for the chemical distance in sparse long-range percolation models , 2004 .

[2]  A. W. van der Vaart,et al.  Uniform Central Limit Theorems , 2001 .

[3]  Fan Chung Graham,et al.  The Average Distance in a Random Graph with Given Expected Degrees , 2004, Internet Math..

[4]  Massimo Franceschetti,et al.  Navigation in small-world networks: a scale-free continuum model , 2006, Journal of Applied Probability.

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  Noam Berger,et al.  The diameter of long-range percolation clusters on finite cycles , 2001, Random Struct. Algorithms.

[7]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[8]  Carson C. Chow,et al.  Small Worlds , 2000 .

[9]  M. Penrose CONTINUUM PERCOLATION (Cambridge Tracts in Mathematics 119) , 1998 .

[10]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[11]  Christos H. Papadimitriou,et al.  Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet , 2002, ICALP.

[12]  Joao Antonio Pereira,et al.  Linked: The new science of networks , 2002 .

[13]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[14]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Harry Kesten,et al.  Geometry of the Uniform Spanning Forest: Transitions in Dimensions 4, 8, 12 , 2001 .

[16]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[17]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[18]  A. Barbour,et al.  Poisson Approximation , 1992 .

[19]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David Gamarnik,et al.  The diameter of a long range percolation graph , 2002, SODA '02.

[21]  M. Penrose,et al.  CONTINUUM PERCOLATION (Cambridge Tracts in Mathematics 119) By Ronald Meester and Rahul Roy: 238 pp., £35.00, ISBN 0 521 47504 X (Cambridge University Press, 1996) , 1998 .

[22]  Jon M. Kleinberg,et al.  Navigation in a small world , 2000, Nature.

[23]  M. Barthelemy,et al.  Connectivity distribution of spatial networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Harry Kesten,et al.  Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12 ,... , 2004 .

[25]  Marc Barthelemy Crossover from scale-free to spatial networks , 2002 .

[26]  M. Biskup On the scaling of the chemical distance in long-range percolation models , 2003, math/0304418.

[27]  Béla Bollobás,et al.  Degree distribution of the FKP network model , 2003, Theor. Comput. Sci..