Optical vortices in a vector field : the general definition based on the analogy with topological solitons in a 2D ferromagnet, and examples from the polarization transverse patterns in a laser

New approaches to the characterization of the vector vortical structure of the paraxial monochromatic field are introduced using the analogy between vector field singularities in a distribution of the unit vector of normalized Stokes parameters m(X,Y,Z),m2 = 1 in the transverse plane and topological solitons in a 2D ferromagnet. In this approach the vector vortex of the first order appears as zero and pole of the complex homographic function w = (X + iY)(1-Z)-1. The application of the developed method to the results of numerical simulations of a large aperture Zeeman laser is presented.

[1]  Law,et al.  Optical vortex solitons observed in Kerr nonlinear media. , 1992, Physical review letters.

[2]  I. Freund Saddle point wave fields , 1999 .

[3]  Leonid A. Melnikov,et al.  Transverse pattern dynamics in a short-pulse mode-locked solid-state laser , 1994 .

[4]  A. I. Konukhov,et al.  Polarization transverse pattern dynamics in lasers with anisotropic cavities , 1998 .

[5]  Guy Indebetouw,et al.  Periodic and chaotic spatiotemporal states in a phase-conjugate resonator using a photorefractive BaTiO 3 phase-conjugate mirror , 1992 .

[6]  Giacomelli,et al.  Vortices and defect statistics in two-dimensional optical chaos. , 1991, Physical review letters.

[7]  Marat S. Soskin,et al.  The Gaussian lenses give birth to optical vortices in laser beams , 1998 .

[8]  Ingo Fischer,et al.  Polarization selective symmetry breaking in the near-fields of vertical cavity surface emitting lasers , 2000 .

[9]  C. Law,et al.  Polarized optical vortex solitons: Instabilities and dynamics in Kerr nonlinear media , 1994 .

[10]  Joseph V. Hajnal,et al.  Singularities in the transverse fields of electromagnetic waves. I. Theory , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  B. Ivanov,et al.  Dynamic topological solitons in a two-dimensional ferromagnet , 1999 .

[12]  John F Nye,et al.  Lines of circular polarization in electromagnetic wave fields , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Brambilla,et al.  Transverse laser patterns. II. Variational principle for pattern selection, spatial multistability, and laser hydrodynamics. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[14]  Brambilla,et al.  Transverse laser patterns. I. Phase singularity crystals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[15]  A. V. Mamaev,et al.  Wave-front dislocations: topological limitations for adaptive systems with phase conjugation , 1983 .