CATS: A Color and Thermal Stereo Benchmark

Stereo matching is a well researched area using visibleband color cameras. Thermal images are typically lower resolution, have less texture, and are noisier compared to their visible-band counterparts and are more challenging for stereo matching algorithms. Previous benchmarks for stereo matching either focus entirely on visible-band cameras or contain only a single thermal camera. We present the Color And Thermal Stereo (CATS) benchmark, a dataset consisting of stereo thermal, stereo color, and cross-modality image pairs with high accuracy ground truth (

[1]  Namil Kim,et al.  Multispectral pedestrian detection: Benchmark dataset and baseline , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Reinhard Klette,et al.  Ground Truth Evaluation of Stereo Algorithms for Real World Applications , 2010, ACCV Workshops.

[3]  Ludek Zalud,et al.  Robot mapping with range camera, CCD cameras and thermal imagers , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[4]  Andreas Geiger,et al.  Object scene flow for autonomous vehicles , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Jannik Fritsch,et al.  A new performance measure and evaluation benchmark for road detection algorithms , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

[6]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[7]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Song Zhiwei,et al.  A new sensor fusion framework to deal with false detections for low-cost service robot localization , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[9]  Scott Sorensen,et al.  Robust Shape Registration using Fuzzy Correspondences , 2017, ArXiv.

[10]  Raquel Urtasun,et al.  Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation , 2014, ECCV.

[11]  Scott Sorensen,et al.  Material classification with thermal imagery , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Nabil Aouf,et al.  Thermal Stereo Odometry for UAVs , 2015, IEEE Sensors Journal.

[13]  Pierre-Luc St-Charles,et al.  Thermal–visible registration of human silhouettes: A similarity measure performance evaluation , 2014 .

[14]  Xi Wang,et al.  High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth , 2014, GCPR.

[15]  Ashutosh Saxena,et al.  Depth Estimation Using Monocular and Stereo Cues , 2007, IJCAI.

[16]  Joseph W. Starr,et al.  A comparison of IR stereo vision and LIDAR for use in fire environments , 2012, 2012 IEEE Sensors.

[17]  James W. Davis,et al.  Background-subtraction using contour-based fusion of thermal and visible imagery , 2007, Comput. Vis. Image Underst..

[18]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Yufeng Zheng,et al.  Performance improvement of face recognition using multispectral images and stereo images , 2012, 2012 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).

[21]  Radim Sára,et al.  Efficient Sampling of Disparity Space for Fast And Accurate Matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  W. F. Clocksin,et al.  Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction , 2012, International Journal of Computer Vision.

[23]  Chongzhao Han,et al.  Night-time pedestrian detection by visual-infrared video fusion , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[24]  Scott Sorensen,et al.  Improving calibration of thermal stereo cameras using heated calibration board , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[25]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[26]  Riad I. Hammoud,et al.  Thermal-Visible Video Fusion for Moving Target Tracking and Pedestrian Classification , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Michael Felsberg,et al.  A thermal Object Tracking benchmark , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[28]  Ying Xiong,et al.  Low-level vision by consensus in a spatial hierarchy of regions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  John S. Zelek,et al.  Structure from Infrared Stereo Images , 2008, 2008 Canadian Conference on Computer and Robot Vision.

[30]  Yufeng Zheng,et al.  Orientation-based face recognition using multispectral imagery and score fusion , 2011 .

[31]  Margrit Betke,et al.  A Thermal Infrared Video Benchmark for Visual Analysis , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[32]  ByoungChul Ko,et al.  Online learning based multiple pedestrians tracking in thermal imagery for safe driving at night , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[33]  Joon Lyou,et al.  Matching of thermal and color images with application to power distribution line fault detection , 2015, 2015 15th International Conference on Control, Automation and Systems (ICCAS).

[34]  Guillaume-Alexandre Bilodeau,et al.  An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications , 2012, Comput. Vis. Image Underst..

[35]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[36]  Thomas B. Moeslund,et al.  Pedestrian Counting with Occlusion Handling Using Stereo Thermal Cameras , 2016, Sensors.

[37]  Bernd Jähne,et al.  Outdoor stereo camera system for the generation of real-world benchmark data sets , 2012 .

[38]  Yann LeCun,et al.  Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches , 2015, J. Mach. Learn. Res..

[39]  Gary R. Bradski,et al.  Learning OpenCV - computer vision with the OpenCV library: software that sees , 2008 .

[40]  Scott Sorensen,et al.  Multimodal Stereo Vision For Reconstruction In The Presence Of Reflection , 2015, BMVC.