Energy-efficient neural network inference with microcavity exciton-polaritons

M. Matuszewski,1, ∗ A. Opala,1 R. Mirek,2 M. Furman,2 M. Król,2 K. Tyszka,2 T. C. H. Liew,3 D. Ballarini,4 D. Sanvitto,4, 5 J. Szczytko,2 and B. Piętka2 Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46,PL-02-668 Warsaw, Poland Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland Division of Physics and Applied Physics, Nanyang Technological University 637371, Singapore CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy INFN, Sez. Lecce, 73100 Lecce, Italy

[1]  M. Steger,et al.  Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation , 2018, Physical Review B.

[2]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[3]  Andrew McCallum,et al.  Energy and Policy Considerations for Modern Deep Learning Research , 2020, AAAI.

[4]  Ioannis Tomkos,et al.  A Survey on Optical Interconnects for Data Centers , 2012, IEEE Communications Surveys & Tutorials.

[5]  Volker J. Sorger,et al.  Scaling vectors of attoJoule per bit modulators , 2017 .

[6]  Hoi-Jun Yoo,et al.  UNPU: An Energy-Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit Precision , 2019, IEEE Journal of Solid-State Circuits.

[7]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[8]  Pavlos G. Lagoudakis,et al.  Realizing the classical XY Hamiltonian in polariton simulators. , 2016, Nature materials.

[9]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[10]  D. Frantzeskakis,et al.  Interactions and scattering of quantum vortices in a polariton fluid , 2017, Nature Communications.

[11]  Yue Jiang,et al.  All-optical neural network with nonlinear activation functions , 2019, Optica.

[12]  Damien Rontani,et al.  Human action recognition with a large-scale brain-inspired photonic computer , 2019, Nat. Mach. Intell..

[13]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[14]  Jie Sun,et al.  A one femtojoule athermal silicon modulator , 2013, 1312.2683.

[15]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[16]  D. Ballarini,et al.  All-optical polariton transistor , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[17]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[18]  Jonathan Keeling,et al.  Coherently driven microcavity-polaritons and the question of superfluidity , 2018, Nature Communications.

[19]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[20]  Masaya Notomi,et al.  Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions , 2019, Nature Photonics.

[21]  Dirk Englund,et al.  Programmable photonic circuits , 2020, Nature.

[22]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[23]  D Psaltis,et al.  Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. , 1985, Optics letters.

[24]  Ullrich Scherf,et al.  Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. , 2014, Nature materials.

[25]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[26]  J W Goodman,et al.  Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. , 1978, Optics letters.

[27]  Christian Schneider,et al.  Towards polariton blockade of confined exciton–polaritons , 2018, Nature Materials.

[28]  I. Sagnes,et al.  Lasing in topological edge states of a one-dimensional lattice , 2017, 1704.07310.

[29]  Patrick Y. Wen,et al.  Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium. , 2016, Physical review letters.

[30]  Andrzej Opala,et al.  Neuromorphic Computing in Ginzburg-Landau Polariton-Lattice Systems , 2018, Physical Review Applied.

[31]  M. S. Skolnick,et al.  Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.

[32]  C. Schneider,et al.  Room temperature organic exciton–polariton condensate in a lattice , 2019, Nature Communications.

[33]  A. Kavokin,et al.  Polariton-polariton interaction constants in microcavities , 2010 .

[34]  C. Wright,et al.  Photonics for artificial intelligence and neuromorphic computing , 2020, ArXiv.

[35]  Francesco Tassone,et al.  Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons , 1999 .

[36]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[37]  F T Yu,et al.  Two-dimensional programmable optical neural network. , 1989, Applied optics.

[38]  Pavlos G. Lagoudakis,et al.  All-optical cascadable universal logic gate with sub-picosecond operation , 2020, 2005.04802.

[39]  A. Kavokin,et al.  Propagation and amplification dynamics of 1D polariton condensates. , 2012, Physical review letters.

[40]  Xinbo Chen,et al.  Evaluating the Energy Efficiency of Deep Convolutional Neural Networks on CPUs and GPUs , 2016, 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom).

[41]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[42]  G. Patriarche,et al.  From excitonic to photonic polariton condensate in a ZnO-based microcavity. , 2013, Physical review letters.

[43]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[44]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[45]  D. Ballarini,et al.  Control and ultrafast dynamics of a two-fluid polariton switch. , 2012, Physical review letters.

[46]  Masaya Notomi,et al.  Novel frontier of photonics for data processing—Photonic accelerator , 2019, APL Photonics.

[47]  M. S. Skolnick,et al.  Ultra-Low-Power Hybrid Light-Matter Solitons , 2014, 1409.0725.

[48]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[49]  Matěj Hejda,et al.  Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons , 2020, Scientific Reports.

[50]  Anders S. G. Andrae,et al.  On Global Electricity Usage of Communication Technology: Trends to 2030 , 2015 .

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  Paul R. Prucnal,et al.  Photonic Multiply-Accumulate Operations for Neural Networks , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  Pavlos G. Lagoudakis,et al.  A room-temperature organic polariton transistor , 2019, Nature Photonics.

[54]  V. Ardizzone,et al.  Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature , 2018, Science Advances.

[55]  Damien Rontani,et al.  Large-Scale Spatiotemporal Photonic Reservoir Computer for Image Classification , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  Gordon Wetzstein,et al.  Inference in artificial intelligence with deep optics and photonics , 2020, Nature.

[57]  A. Lvovsky,et al.  Fully reconfigurable coherent optical vector-matrix multiplication. , 2020, Optics letters.

[58]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[59]  Laurent Larger,et al.  Reinforcement Learning in a large scale photonic Recurrent Neural Network , 2017, Optica.

[60]  Paul R. Prucnal,et al.  Silicon Photonic Modulator Neuron , 2018, Physical Review Applied.

[61]  Qionghai Dai,et al.  Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit , 2020, Nature Photonics.

[62]  Indranil Saha,et al.  journal homepage: www.elsevier.com/locate/neucom , 2022 .

[63]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[64]  Xuan Li,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[65]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[66]  Ercan M. Dede,et al.  Weighing in on photonic-based machine learning for automotive mobility , 2021, Nature Photonics.

[67]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[68]  I. Sagnes,et al.  Excitability and self-pulsing in a photonic crystal nanocavity , 2012 .

[69]  Ninghui Sun,et al.  DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning , 2014, ASPLOS.

[70]  Ellen Zhou,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[71]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[72]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[73]  A. Boes,et al.  11 TOPS photonic convolutional accelerator for optical neural networks , 2021, Nature.

[74]  J. Suffczyński,et al.  Neuromorphic Binarized Polariton Networks , 2021, Nano letters.

[75]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[76]  S. A. Maier,et al.  Nonlinear interactions in an organic polariton condensate , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[77]  Damien Querlioz,et al.  Physics for neuromorphic computing , 2020, Nature Reviews Physics.

[78]  A. Lemaître,et al.  Quantum-correlated photons from semiconductor cavity polaritons , 2017 .

[79]  Karthikeyan Sankaralingam,et al.  Dark Silicon and the End of Multicore Scaling , 2012, IEEE Micro.

[80]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[81]  D. Ritchie,et al.  Dark Solitons in High Velocity Waveguide Polariton Fluids. , 2017, Physical review letters.

[82]  Eugenio Culurciello,et al.  An Analysis of Deep Neural Network Models for Practical Applications , 2016, ArXiv.

[83]  Romuald Houdré,et al.  Exciton–polariton spin switches , 2010 .

[84]  Nicola Calabretta,et al.  Deep Neural Network Through an InP SOA-Based Photonic Integrated Cross-Connect , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[85]  Ali Farhadi,et al.  XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks , 2016, ECCV.

[86]  I. Shelykh,et al.  Optically and electrically controlled polariton spin transistor , 2010, 1007.3665.

[87]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[88]  Jason Cong,et al.  Scaling for edge inference of deep neural networks , 2018 .

[89]  Gordon Wetzstein,et al.  Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification , 2018, Scientific Reports.

[90]  I. Shelykh,et al.  Optical circuits based on polariton neurons in semiconductor microcavities. , 2008, Physical review letters.

[91]  Shanhui Fan,et al.  Wave physics as an analog recurrent neural network , 2019, Science Advances.

[92]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[93]  K. West,et al.  Topological order and thermal equilibrium in polariton condensates. , 2018 .

[94]  M Gruber,et al.  Planar-integrated optical vector-matrix multiplier. , 2000, Applied optics.

[95]  Tarek El-Ghazawi,et al.  ITO-based electro-absorption modulator for photonic neural activation function , 2019, APL Materials.

[96]  T. Gao,et al.  Polariton Condensate Transistor Switch , 2012, ArXiv.

[97]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, ArXiv.

[98]  J. Baumberg,et al.  A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. , 2016, Nature materials.

[99]  Tao Chen,et al.  Classification with a disordered dopant-atom network in silicon , 2020, Nature.

[100]  A. Kavokin,et al.  Probing the dynamics of spontaneous quantum vortices in polariton superfluids. , 2010, Physical review letters.

[101]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[102]  Q. Xiong,et al.  Observation of exciton polariton condensation in a perovskite lattice at room temperature , 2019, Nature Physics.

[103]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.