Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer–Zernike approach
暂无分享,去创建一个
J. J. M. Braat | A. J. E. M. Janssen | A. Janssen | J. Braat | P. Dirksen | C. Van der Avoort * | C. Van der Avoort * | P. Dirksen
[1] A. Janssen,et al. Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.
[2] J. G. Walker. The Phase Retrieval Problem , 1981 .
[3] Richard Barakat,et al. Determination of the wave-front aberration function from measured values of the point-spread function: a two-dimensional phase retrieval problem , 1992 .
[4] Joseph P. Kirk,et al. Aberration analysis using reconstructed aerial images of isolated contacts on attenuated phase-shift masks , 2001, SPIE Advanced Lithography.
[5] Timothy A. Brunner,et al. Impact of lens aberrations on optical lithography , 1997, IBM J. Res. Dev..
[6] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[7] J R Fienup,et al. Phase retrieval algorithms: a comparison. , 1982, Applied optics.
[8] B. Frieden. Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.
[9] Peter De Bisschop,et al. Characterization of a projection lens using the extended Nijboer-Zernike approach , 2002, SPIE Advanced Lithography.
[10] Peter De Bisschop,et al. Novel aberration monitor for optical lithography , 1999, Advanced Lithography.
[11] Timothy A. Brunner,et al. Measurement of microlithography aerial image quality , 1996, Advanced Lithography.
[12] Augustus J. E. M. Janssen,et al. Determination of resist parameters using the extended Nijboer-Zernike theory , 2004, SPIE Advanced Lithography.
[13] Jan B. van Schoot,et al. Understanding systematic and random CD variations using predictive modeling techniques , 1999, Advanced Lithography.
[14] Joseph J. M. Braat,et al. Aberration retrieval using the extended Nijboer-Zernike approach , 2003 .
[15] R. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .
[16] Joseph J. M. Braat,et al. Experimental determination of lens aberrations from the intensity point-spread function in the focal region , 2003, SPIE Advanced Lithography.
[17] Robert A. Gonsalves,et al. Phase Retrieval And Diversity In Adaptive Optics , 1982 .
[18] Andrew G. Glen,et al. APPL , 2001 .
[19] B. Frieden,et al. Multiple-filter approach to phase retrieval from modulus data. , 1992, Applied optics.
[20] I Iglesias. Parametric Wave-Aberration Retrieval from Point-Spread Function Data by use of a Pyramidal Recursive Algorithm. , 1998, Applied optics.
[21] Nigel R. Farrar,et al. In-situ measurement of lens aberrations , 2000, Advanced Lithography.
[22] E. Angel,et al. Restoration of images degraded by spatially varying pointspread functions by a conjugate gradient method. , 1978, Applied optics.
[23] D. Van Dyck,et al. A new procedure for wave function restoration in high resolution electron microscopy , 1987 .
[24] Peter Dirksen,et al. Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.
[25] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[26] A. Janssen,et al. On the computation of the nijboer-zernike aberration integrals at arbitrary defocus , 2004 .
[27] James R. Fienup,et al. Phase retrieval for undersampled broadband images , 1999 .
[28] William H. Richardson,et al. Bayesian-Based Iterative Method of Image Restoration , 1972 .
[29] A. Janssen. Extended Nijboer-Zernike approach for the computation of optical point-spread functions. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.
[30] J. H. Seldin,et al. Hubble Space Telescope characterized by using phase-retrieval algorithms. , 1993, Applied optics.