New silicon thin-film technology associated with original DC–DC converter: An economic alternative way to improve photovoltaic systems efficiencies

In this article, we aim at optimizing an innovative tandem structure based on polymorphous and microcrystalline silicon for the top and bottom elementary cells, respectively, combined with an original DC–DC converter.

[1]  Keith Emery Solar simulators and I-V measurement methods , 1986 .

[2]  T. Martire,et al.  Optimization of the Supply Voltage System in Interleaved Converters Using Intercell Transformers , 2007, IEEE Transactions on Power Electronics.

[3]  Andreas Poullikkas,et al.  Assessment of oxyfuel power generation technologies , 2009 .

[4]  N. Lior Sustainable energy development: The present (2009) situation and possible paths to the future , 2010 .

[5]  Joshua M. Pearce Photovoltaics - A Path to Sustainable Futures , 2002 .

[6]  Brent P. Nelson,et al.  Amorphous silicon films and solar cells deposited by HWCVD at ultra-high deposition rates , 2002 .

[7]  P. Chatterjee,et al.  PHOTOVOLTAIC PERFORMANCE OF A-SI:H HOMOJUNCTION P-I-N SOLAR CELLS : A COMPUTER SIMULATION STUDY , 1994 .

[8]  Eric Laboure,et al.  Monolithic Magnetic Couplers for Interleaved Converters with a High Number of Cells , 2006 .

[9]  Chiung-Chou Liao,et al.  Genetic k-means algorithm based RBF network for photovoltaic MPP prediction , 2010 .

[10]  Alessandro Fantoni,et al.  Tailoring defects on amorphous silicon pin devices , 1993 .

[11]  G. Makrides,et al.  Potential of photovoltaic systems in countries with high solar irradiation , 2010 .

[12]  Jean-Paul Kleider,et al.  Device grade hydrogenated polymorphous silicon deposited at high rates , 2008 .

[13]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[14]  Olivier Bethoux,et al.  Geometrical optimization and electrical performance comparison of thin-film tandem structures based on pm-Si:H and μc-Si:H using computer simulation , 2011 .

[15]  Charles R. Sullivan,et al.  Coupled-inductor design optimization for fast-response low-voltage DC-DC converters , 2002, APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335).

[16]  C. Azar,et al.  Material constraints for thin-film solar cells , 1998 .

[17]  Brian A. Korgel,et al.  Hydrogenated Amorphous Silicon (a-Si:H) Colloids , 2010 .

[18]  Jean-Paul Kleider,et al.  Some electronic and metastability properties of a new nanostructured material: Hydrogenated polymorphous silicon , 1999 .

[19]  Enric Bertran,et al.  Nanoparticle formation in low-pressure silane plasmas: bridging the gap between a-Si:H and μc-Si films , 1998 .

[20]  Jean-Paul Kleider,et al.  Midgap density of states in hydrogenated polymorphous silicon , 1999 .

[21]  Madoka Takai,et al.  Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate , 2003 .

[22]  O. Garcia,et al.  Magnetic integration for interleaved converters , 2003, Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03..

[23]  Griffin Burgh,et al.  Energizing our future : rational choices for the 21st century , 2008 .

[24]  Fatiha Kail Etude in-situ par ellipsométrie et spectrométrie de masse du transport de l'hydrogène dans a-Si:H : Cinétique de diffusion et modifications de structure , 2005 .

[25]  Yuzo Mori,et al.  Characterization of intrinsic amorphous silicon layers for solar cells prepared at extremely high rates by atmospheric pressure plasma chemical vapor deposition , 2005 .

[26]  Marco Raugei,et al.  Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks , 2009 .

[27]  A. Feltrin,et al.  Material considerations for terawatt level deployment of photovoltaics , 2008 .

[28]  Jean-Paul Kleider,et al.  Properties of a new a-Si:H-like material: hydrogenated polymorphous silicon , 1998 .

[29]  W. Fuhs,et al.  AFORS-HET, a numerical pc-program for simulation of heterojunction solar cells , 2004 .

[30]  C. Privato,et al.  Influence of microcrystalline silicon bottom cell on micromorph tandem solar cell performance , 2008 .

[31]  P. Roca i Cabarrocas,et al.  Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films , 2000 .

[32]  Varun,et al.  Life cycle assessment of solar PV based electricity generation systems: A review , 2010 .

[33]  Jean-Paul Kleider,et al.  Very low densities of localized states at the Fermi level in hydrogenated polymorphous silicon from capacitance and space-charge-limited current measurements , 1999 .

[34]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[35]  Joshua M. Pearce Expanding Photovoltaic Penetration with Residential Distributed Generation from Hybrid Solar Photovoltaic Combined Heat and Power Systems , 2009 .

[36]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[37]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[38]  David M Smith Engineering Computation with MATLAB , 2007 .

[39]  Edris Pouresmaeil,et al.  Distributed energy resources and benefits to the environment , 2010 .