Correlated responses to selection for different cell size in Chlamydomonas reinhardtii using divergent evolutionary pathways

[1]  J. Cornet,et al.  Kinetic Modeling of CO2 Biofixation by Microalgae and Optimization of Carbon Supply in Various Photobioreactor Technologies , 2022, ACS Sustainable Chemistry & Engineering.

[2]  X. Johnson,et al.  Interactions Between Carbon Metabolism and Photosynthetic Electron Transport in a Chlamydomonas reinhardtii Mutant Without CO2 Fixation by RuBisCO , 2022, Frontiers in Plant Science.

[3]  U. Sommer,et al.  Temperature and the size of freshwater phytoplankton , 2020, Hydrobiologia.

[4]  G. Arnqvist,et al.  Mixed Models Offer No Freedom from Degrees of Freedom. , 2020, Trends in ecology & evolution.

[5]  Jincai Ma,et al.  Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review , 2020, Chemistry and Ecology.

[6]  Martino E. Malerba,et al.  Testing the drivers of the temperature–size covariance using artificial selection , 2019, Evolution; international journal of organic evolution.

[7]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[8]  S. Collins,et al.  Quality-quantity tradeoffs drive functional trait evolution in a model microalgal “climate change winner” , 2019, bioRxiv.

[9]  V. Niknam,et al.  Oxidative damage and antioxidative system in algae , 2019, Toxicology reports.

[10]  T. Novikova,et al.  MORPHOLOGICAL AND MORPHOMETRICAL FEATURES IN DUNALIELLA SALINA (CHLAMYDOMONADALES, DUNALIELLACEAE) DURING THE TWO-PHASE CULTIVATION MODE , 2019, Ecologica Montenegrina.

[11]  D. Marshall,et al.  Size-abundance rules? Evolution changes scaling relationships between size, metabolism and demography. , 2019, Ecology letters.

[12]  A. Godhe,et al.  Microalgae biotechnology in Nordic countries – the potential of local strains , 2019, Physiologia plantarum.

[13]  Zhiwei Luo,et al.  Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma. , 2019, Bioresource technology.

[14]  Kaiyao Huang,et al.  High level of reactive oxygen species inhibits triacylglycerols accumulation in Chlamydomonas reinhardtii , 2019, Algal Research.

[15]  C. Foyer Reactive oxygen species, oxidative signaling and the regulation of photosynthesis , 2018, Environmental and experimental botany.

[16]  Martino E. Malerba,et al.  Do larger individuals cope with resource fluctuations better? An artificial selection approach , 2018, Proceedings of the Royal Society B: Biological Sciences.

[17]  K. Poluri,et al.  Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. , 2018, Biotechnology advances.

[18]  J. Beardall,et al.  Cell size, photosynthesis and the package effect: an artificial selection approach. , 2018, The New phytologist.

[19]  D. Gilmour,et al.  The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii , 2018 .

[20]  Andrew G. Palmer,et al.  Robust Microplate-Based Methods for Culturing and in Vivo Phenotypic Screening of Chlamydomonas reinhardtii , 2018, Front. Plant Sci..

[21]  Martino E. Malerba,et al.  Eco-energetic consequences of evolutionary shifts in body size. , 2018, Ecology letters.

[22]  C. R. White,et al.  Phytoplankton size-scaling of net-energy flux across light and biomass gradients. , 2017, Ecology.

[23]  Jo‐Shu Chang,et al.  Lutein production with wild-type and mutant strains of Chlorella sorokiniana MB-1 under mixotrophic growth , 2017 .

[24]  N. Colegrave,et al.  Evolutionary consequences of multidriver environmental change in an aquatic primary producer , 2017, Proceedings of the National Academy of Sciences.

[25]  U. Sommer,et al.  Do marine phytoplankton follow Bergmann's rule sensu lato? , 2017, Biological reviews of the Cambridge Philosophical Society.

[26]  P. Pospíšil Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress , 2016, Frontiers in plant science.

[27]  J. Beardall,et al.  Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. , 2016, Chemosphere.

[28]  P. Schenk,et al.  Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road , 2016, Front. Plant Sci..

[29]  P. Pospíšil,et al.  Singlet oxygen production in Chlamydomonas reinhardtii under heat stress , 2016, Scientific Reports.

[30]  K H Andersen,et al.  Characteristic Sizes of Life in the Oceans, from Bacteria to Whales. , 2016, Annual review of marine science.

[31]  I. Ross,et al.  Photoacclimation and productivity of Chlamydomonas reinhardtii grown in fluctuating light regimes which simulate outdoor algal culture conditions , 2016 .

[32]  J. Dunne,et al.  Phytoplankton succession explains size-partitioning of new production following upwelling-induced blooms , 2015 .

[33]  J. Schwartz,et al.  Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii , 2015, Front. Plant Sci..

[34]  K. Niyogi,et al.  Light stress and photoprotection in Chlamydomonas reinhardtii. , 2015, The Plant journal : for cell and molecular biology.

[35]  J. Raven,et al.  Algae , 2014, Current Biology.

[36]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[37]  Jian Zhang,et al.  Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol , 2014, Biotechnology for Biofuels.

[38]  P. Broady,et al.  Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond , 2014, Journal of Applied Phycology.

[39]  Timothy M. Lenton,et al.  The impact of temperature on marine phytoplankton resource allocation and metabolism , 2013 .

[40]  A. Krieger-Liszkay,et al.  Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. , 2013, Biochimica et biophysica acta.

[41]  G. M. Ross,et al.  Management of oxidative stress by microalgae. , 2013, Canadian journal of physiology and pharmacology.

[42]  Anna Salerno,et al.  Characteristics and potential of micro algal cultivation strategies: a review , 2012 .

[43]  U. Sommer,et al.  Phytoplankton Cell Size: Intra- and Interspecific Effects of Warming and Grazing , 2012, PloS one.

[44]  Richard T. Sayre,et al.  Optimization of photosynthetic light energy utilization by microalgae , 2012 .

[45]  V. Tavano,et al.  Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure , 2012 .

[46]  A Anandraj,et al.  PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. , 2011, Bioresource technology.

[47]  A. Lopez-Urrutia,et al.  Increasing importance of small phytoplankton in a warmer ocean , 2010 .

[48]  D. Campbell,et al.  Cell size trade-offs govern light exploitation strategies in marine phytoplankton. , 2010, Environmental microbiology.

[49]  K. Flynn Going for the slow burn: why should possession of a low maximum growth rate be advantageous for microalgae? , 2009 .

[50]  L. Simmons,et al.  Reactive oxygen species as universal constraints in life-history evolution , 2009, Proceedings of the Royal Society B: Biological Sciences.

[51]  Jason G. Bragg,et al.  Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. , 2009, The New phytologist.

[52]  C. Posten,et al.  Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production , 2008, BioEnergy Research.

[53]  A. McDowall,et al.  Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. , 2007, Plant biotechnology journal.

[54]  M. Merzlyak,et al.  EFFECT OF NITROGEN STARVATION ON OPTICAL PROPERTIES, PIGMENTS, AND ARACHIDONIC ACID CONTENT OF THE UNICELLULAR GREEN ALGA PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE, CHLOROPHYTA) 1 , 2007 .

[55]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[56]  P. Keeling,et al.  Tracing the Evolution of the Light-Harvesting Antennae in Chlorophyll a/b-Containing Organisms1[OA] , 2007, Plant Physiology.

[57]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[58]  K. Niyogi,et al.  Singlet oxygen and photo‐oxidative stress management in plants and algae , 2005 .

[59]  Steven A. Julious,et al.  Using confidence intervals around individual means to assess statistical significance between two means , 2004 .

[60]  E. H. Harris,et al.  CHLAMYDOMONAS AS A MODEL ORGANISM. , 2003, Annual review of plant physiology and plant molecular biology.

[61]  J. Urabe,et al.  Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa , 2001, Limnology.

[62]  J. Benemann,et al.  Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source , 2000, Planta.

[63]  P. Heifetz,et al.  Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. , 2000, Plant physiology.

[64]  John A. Raven,et al.  The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton , 1998 .

[65]  K. Niyogi,et al.  The roles of specific xanthophylls in photoprotection. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Barber Photosynthetic reaction centres: a common link , 1987 .

[67]  R. Levine,et al.  Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. , 1965, Proceedings of the National Academy of Sciences of the United States of America.