Data Configurations and the Cokriging System: Simplification by Screen Effects

Large cokriging systems arise in many situations and are difficult to handle in practice. Simplifications such as simple kriging, strictly collocated and multicollocated cokriging are often used and models under which such simplifications are, in fact, equivalent to cokriging have recently received attention. In this paper, a two-dimensional second-order stationary random process with known mean is considered and the redundancy of certain components of the data at certain locations vis-à-vis the solution to the simple cokriging system is examined. Conditions for the simple cokriging weights of these components at these locations are set to zero. The conditions generalise the notion of the autokrigeability coefficient and can, in principle, be applied to any data configuration. In specific sampling situations such as the isotopic and certain heterotropic configurations, models under which simple kriging, strictly collocated, multicollocated and dislocated cokriging are equivalent to simple cokriging are readily identified and results already available in the literature are obtained. These are readily identified and the results are already available in the literature. The advantage of the approach presented here is that it can be applied to any data configuration for analysis of permissible simplifications in simple cokriging.