Finite element modeling approaches in grinding

Abstract This paper presents a review of two-dimensional (2D) and three-dimensional (3D) finite element grinding models after 1995 and categorizes them by the scale of the modeling approach—either macro- or micro-scale. Macro-scale models consider the overall wheel–workpiece interaction while micro-scale models focus on the individual grain–workpiece interactions. Each model is discussed and the relevant boundary conditions, material constitutive treatments, and load inputs are compared. Future directions for finite element grinding modeling are then recommended and, based on the results of this review, synthesized current state-of-the-art macro- and micro-scale modeling approaches are presented.

[1]  Liangchi Zhang,et al.  Applied mechanics in grinding—III. A new formula for contact length prediction and a comparison of available models , 1993 .

[2]  T. Özel,et al.  Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting , 2000 .

[3]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[4]  Liangchi Zhang,et al.  APPLIED MECHANICS IN GRINDING PART II: MODELLING OF ELASTIC MODULUS OF WHEELS AND INTERFACE FORCES , 1993 .

[5]  Fritz Klocke,et al.  Examples of FEM application in manufacturing technology , 2002 .

[6]  Srinivasan Chandrasekar,et al.  Simulation of thermal stresses due to grinding , 2001 .

[7]  K Puttick,et al.  Handbook of Ceramic Grinding and Polishing , 2000 .

[8]  R. Komanduri,et al.  Machining and Grinding: A Historical Review of the Classical Papers , 1993 .

[9]  Jacques Peters,et al.  An Improved Mathematical Model to Predict Residual Stresses in Surface Plunge Grinding , 1987 .

[10]  L. E. Goodman,et al.  The Stress Field Created by a Circular Sliding Contact , 1966 .

[11]  G. Warnecke,et al.  Optimization of the Dynamic Behavior of Grinding Wheels for Grinding of Hard and Brittle Materials Using the Finite Element Method , 1999 .

[12]  A. B. Chattopadhyay,et al.  A study of effects of cryo-cooling in grinding , 1995 .

[13]  D. P. Saini A New Model of Local Elastic Deflections in Grinding , 1984 .

[14]  Liangchi Zhang,et al.  Applied mechanics in grinding—V. Thermal residual stresses , 1997 .

[15]  A. Turbat,et al.  Prevision of Thermal Residual Stresses in Surface Plunge Grinding of Steels , 1982 .

[16]  Roberto S. Murphy-Arteaga,et al.  n型非晶質SiGe:H/p型結晶質Siヘテロ接合ダイオードの伝導機構に及ぼすa‐SiGe:H厚の影響 , 2005 .

[17]  R. D. Zerkle,et al.  Thermal Analysis of the Grinding Process , 1970 .

[18]  V. Piispanen Theory of Formation of Metal Chips , 1948 .

[19]  Mofid Mahdi,et al.  The finite element thermal analysis of grinding processes by ADINA , 1995 .

[20]  Toshiyuki Obikawa,et al.  Surface generation model in grinding with effect of grain shape and cutting speed , 2005 .

[21]  H. Hintermann,et al.  On Performance of Brazed Single-Layer CBN Wheel , 1994 .

[22]  W. Brian Rowe,et al.  Thermal analysis of high efficiency deep grinding , 2001 .

[23]  Milton C. Shaw Some Observations Concerning the Mechanics of Cutting and Grinding , 1993 .

[24]  Ichiro Inasaki,et al.  Tribology of Abrasive Machining Processes , 2004 .

[25]  Jin Kyung Choi,et al.  Grinding Characteristics of Carbon Fiber Epoxy Composite Hollow Shafts , 2000 .

[26]  Robert Bauer,et al.  A survey of recent grinding wheel topography models , 2006 .

[27]  G. R. Johnson,et al.  Characterization and evaluation of silicon carbide for high-velocity impact , 2005 .

[28]  Mofid Mahdi,et al.  Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation , 1995 .

[29]  Bi Zhang,et al.  Grinding Damage Prediction for Ceramics via CDM Model , 2000 .

[30]  Ekkard Brinksmeier,et al.  Advances in Modeling and Simulation of Grinding Processes , 2006 .

[31]  Jaroslav Mackerle,et al.  Finite-element analysis and simulation of machining: a bibliography (1976–1996) , 1999 .

[32]  Zhijian Pei,et al.  Finite element analysis for grinding and lapping of wire-sawn silicon wafers , 2002 .

[33]  Mofid Mahdi,et al.  A numerical algorithm for the full coupling of mechanical deformation, thermal deformation and phase transformation in surface grinding , 2000 .

[34]  Robert Bauer,et al.  Experimental validation of numerical thermal models for dry grinding , 2008 .

[35]  Hédi Hamdi,et al.  Residual stresses computation in a grinding process , 2004 .

[36]  Mofid Mahdi,et al.  Applied mechanics in grinding—VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation , 1998 .

[37]  Said Jahanmir,et al.  Finite element simulation of straight plunge grinding for advanced ceramics , 2003 .

[38]  Hertz On the Contact of Elastic Solids , 1882 .

[39]  Y. Ohbuchi,et al.  Finite Element Modeling of Chip Formation in the Domain of Negative Rake Angle Cutting , 2003 .

[40]  W. S. Lau,et al.  A finite-element analysis of residual stress in stretch grinding , 1999 .

[41]  Athanasios G. Mamalis,et al.  Thermal Modelling of Surface Grinding Using Implicit Finite Element Techniques , 2003 .

[42]  T. Jin,et al.  Three Dimensional Finite Element Simulation of Transient Heat Transfer in High Efficiency Deep Grinding , 2004 .

[43]  Joachim Danckert,et al.  Finite Element Analysis of Stresses Due to Normal and Sliding Contact Conditions on an Elastic Surface , 2003 .

[44]  Y Qin,et al.  Computer simulation of a workpiece temperature field during the grinding process , 2003 .

[45]  Michael J. Worswick,et al.  Adiabatic Shear in annealed and shock-hardened iron and in quenched and tempered 4340 steel , 2001 .

[46]  D. Biermann,et al.  MODELING AND SIMULATION OF WORKPIECE TEMPERATURE IN GRINDING BY FINITE ELEMENT ANALYSIS , 1997 .

[47]  D. Golini,et al.  Twyman effect mechanics in grinding and microgrinding. , 1996, Applied optics.

[48]  Mordechay Schlesinger,et al.  A multiscale finite-element method for solving rough-surface elastic-contact problems , 2004 .

[49]  Mofid Mahdi,et al.  Residual stresses in ground components caused by coupled thermal and mechanical plastic deformation , 1999 .