Lower Bounds for Quantum Parameter Estimation
暂无分享,去创建一个
[1] M. Hayashi. Fourier Analytic Approach to Quantum Estimation of Group Action , 2012, 1209.3463.
[2] Jacob Ziv,et al. Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.
[3] Martin Fraas,et al. An Analysis of the Stationary Operation of Atomic Clocks , 2013, 1303.6083.
[4] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[5] R. Blume-Kohout. Robust error bars for quantum tomography , 2012, 1202.5270.
[6] Samuel L Braunstein,et al. Exponentially enhanced quantum metrology. , 2008, Physical review letters.
[7] Masahito Hayashi,et al. A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.
[8] Alexander Semenovich Holevo,et al. Estimation of shift parameters of a quantum state , 1978 .
[9] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[10] Stephen Becker,et al. Quantum state tomography via compressed sensing. , 2009, Physical review letters.
[11] R. Werner. Screen observables in relativistic and nonrelativistic quantum mechanics , 1986 .
[12] 竹崎 正道. Theory of operator algebras , 2002 .
[13] M. Takesaki,et al. Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.
[14] R. Werner,et al. Estimating the spectrum of a density operator , 2001, quant-ph/0102027.
[15] An introduction to lie groups and lie algebras , 1968 .
[16] H. Vincent Poor,et al. Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.
[17] Carl W. Helstrom,et al. Estimation of a displacement parameter of a quantum system , 1974 .
[18] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[19] J. Ignacio Cirac,et al. Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .
[20] Milburn,et al. Optimal quantum measurements for phase estimation. , 1995, Physical review letters.
[21] R. Blume-Kohout. Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.
[22] R. Renner,et al. One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.
[23] H. Yuen. The ultimate quantum limits on the accuracy of measurements , 1992 .
[24] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[25] G. D’Ariano,et al. Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.
[26] R. Spekkens,et al. Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.
[27] Stephen E. Fienberg,et al. Testing Statistical Hypotheses , 2005 .
[28] S. Popescu,et al. Coherently enhanced measurements in classical mechanics , 2013, 1305.1051.
[29] R. Goodman,et al. Symmetry, Representations, and Invariants , 2009 .
[30] R. Ryan. Introduction to Tensor Products of Banach Spaces , 2002 .
[31] L. Jiang,et al. Quantum-limited measurements of atomic scattering properties , 2007, 0706.3376.
[32] J. Neyman,et al. On the Problem of Confidence Intervals , 1935 .
[33] Michael J. W. Hall,et al. Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.
[34] I. G. MacDonald,et al. Lectures on Lie groups and Lie algebras , 1995 .
[35] F. Brandão,et al. A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.
[36] Alfredo Luis,et al. Nonlinear transformations and the Heisenberg limit , 2004 .
[37] Yury Polyanskiy,et al. Saddle Point in the Minimax Converse for Channel Coding , 2013, IEEE Transactions on Information Theory.
[38] K Fan,et al. Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.
[39] Fundamental limits on the accuracy of optical phase estimation from rate-distortion theory , 2012 .
[40] Masahito Hayashi,et al. Comparison Between the Cramer-Rao and the Mini-max Approaches in Quantum Channel Estimation , 2010, 1003.4575.
[41] Sergio Boixo,et al. Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.
[42] Matthias Christandl,et al. Reliable quantum state tomography. , 2011, Physical review letters.
[43] Alexander Kirillov,et al. An Introduction to Lie Groups and Lie Algebras , 2008 .
[44] Morgan W. Mitchell,et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2012 .
[45] Seth Lloyd,et al. Quantum measurement bounds beyond the uncertainty relations. , 2011, Physical review letters.
[46] H. Weyl. The Classical Groups , 1939 .
[47] G. Summy,et al. PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .
[48] Madhu Sudan. List decoding: algorithms and applications , 2000, SIGA.
[49] M. Keyl. QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS , 2004 .
[50] D. Braun,et al. Heisenberg-limited sensitivity with decoherence-enhanced measurements. , 2011, Nature communications.
[51] Jonas Kahn. Fast rate estimation of a unitary operation in SU(d) , 2007 .
[52] B. Sundaram,et al. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit , 2007, 0709.3842.
[53] Ruediger Schack,et al. Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.
[54] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[55] Yuen,et al. Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.
[56] H. Weyl. The Classical Groups , 1940 .
[57] Takayasu Ito,et al. Theoretical Computer Science: Exploring New Frontiers of Theoretical Informatics , 2001, Lecture Notes in Computer Science.
[58] D. Braun,et al. Decoherence-enhanced measurements , 2009, 0902.1213.
[59] R. Renner,et al. Generalized Entropies , 2012, 1211.3141.
[60] Giulio Chiribella,et al. Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.
[61] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[62] H. Witting,et al. Optimale Tests und ungünstigste Verteilungen , 1967 .
[63] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[64] Etienne Rassart. A polynomiality property for Littlewood-Richardson coefficients , 2004, J. Comb. Theory, Ser. A.
[65] G Chiribella,et al. Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.
[66] K. Jacobs,et al. Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules , 2008 .
[67] F. Furrer,et al. Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.
[68] Richard D. Gill,et al. Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.
[69] R. Blume-Kohout. Paranoid tomography: confidence regions for quantum states , 2012 .
[70] Asymptotic estimation theory for a finite dimensional pure state model , 1997, quant-ph/9704041.
[71] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[72] Sergio Verdú,et al. Lossy Joint Source-Channel Coding in the Finite Blocklength Regime , 2012, IEEE Transactions on Information Theory.
[73] A. Luis,et al. Breaking the Heisenberg limit with inefficient detectors , 2005 .
[74] Mankei Tsang,et al. Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.
[75] J. Kahn,et al. Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.
[76] Z. Hradil. Quantum-state estimation , 1996, quant-ph/9609012.
[77] Wiseman,et al. Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.
[78] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[79] Jonathan P Dowling,et al. Local and global distinguishability in quantum interferometry. , 2007, Physical review letters.
[80] Mario Berta,et al. Continuous Variable Entropic Uncertainty Relations in the Presence of Quantum Memory , 2013 .