Lower Bounds for Quantum Parameter Estimation

The laws of quantum mechanics place fundamental limits on the accuracy of measurements and, therefore, on the estimation of unknown parameters of a quantum system. In this paper, we prove lower bounds on the size of confidence regions reported by any region estimator for a given ensemble of probe states and probability of success. Our bounds are derived from a previously unnoticed connection between the size of confidence regions and the error probabilities of a corresponding binary hypothesis test. In group-covariant scenarios, we find that there is an ultimate bound for any estimation scheme, which depends only on the representation-theoretic data of the probe system, and we evaluate its asymptotics in the limit of many systems, establishing a general Heisenberg limit for region estimation. We apply our results to several examples, in particular, to phase estimation, where our bounds allow us to recover the well-known Heisenberg and shot-noise scaling.

[1]  M. Hayashi Fourier Analytic Approach to Quantum Estimation of Group Action , 2012, 1209.3463.

[2]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[3]  Martin Fraas,et al.  An Analysis of the Stationary Operation of Atomic Clocks , 2013, 1303.6083.

[4]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[5]  R. Blume-Kohout Robust error bars for quantum tomography , 2012, 1202.5270.

[6]  Samuel L Braunstein,et al.  Exponentially enhanced quantum metrology. , 2008, Physical review letters.

[7]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[8]  Alexander Semenovich Holevo,et al.  Estimation of shift parameters of a quantum state , 1978 .

[9]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[10]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[11]  R. Werner Screen observables in relativistic and nonrelativistic quantum mechanics , 1986 .

[12]  竹崎 正道 Theory of operator algebras , 2002 .

[13]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[14]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[15]  An introduction to lie groups and lie algebras , 1968 .

[16]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[17]  Carl W. Helstrom,et al.  Estimation of a displacement parameter of a quantum system , 1974 .

[18]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[19]  J. Ignacio Cirac,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .

[20]  Milburn,et al.  Optimal quantum measurements for phase estimation. , 1995, Physical review letters.

[21]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[22]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[23]  H. Yuen The ultimate quantum limits on the accuracy of measurements , 1992 .

[24]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[25]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[26]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[27]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[28]  S. Popescu,et al.  Coherently enhanced measurements in classical mechanics , 2013, 1305.1051.

[29]  R. Goodman,et al.  Symmetry, Representations, and Invariants , 2009 .

[30]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[31]  L. Jiang,et al.  Quantum-limited measurements of atomic scattering properties , 2007, 0706.3376.

[32]  J. Neyman,et al.  On the Problem of Confidence Intervals , 1935 .

[33]  Michael J. W. Hall,et al.  Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.

[34]  I. G. MacDonald,et al.  Lectures on Lie groups and Lie algebras , 1995 .

[35]  F. Brandão,et al.  A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.

[36]  Alfredo Luis,et al.  Nonlinear transformations and the Heisenberg limit , 2004 .

[37]  Yury Polyanskiy,et al.  Saddle Point in the Minimax Converse for Channel Coding , 2013, IEEE Transactions on Information Theory.

[38]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Fundamental limits on the accuracy of optical phase estimation from rate-distortion theory , 2012 .

[40]  Masahito Hayashi,et al.  Comparison Between the Cramer-Rao and the Mini-max Approaches in Quantum Channel Estimation , 2010, 1003.4575.

[41]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[42]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[43]  Alexander Kirillov,et al.  An Introduction to Lie Groups and Lie Algebras , 2008 .

[44]  Morgan W. Mitchell,et al.  Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2012 .

[45]  Seth Lloyd,et al.  Quantum measurement bounds beyond the uncertainty relations. , 2011, Physical review letters.

[46]  H. Weyl The Classical Groups , 1939 .

[47]  G. Summy,et al.  PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .

[48]  Madhu Sudan List decoding: algorithms and applications , 2000, SIGA.

[49]  M. Keyl QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS , 2004 .

[50]  D. Braun,et al.  Heisenberg-limited sensitivity with decoherence-enhanced measurements. , 2011, Nature communications.

[51]  Jonas Kahn Fast rate estimation of a unitary operation in SU(d) , 2007 .

[52]  B. Sundaram,et al.  Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit , 2007, 0709.3842.

[53]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[54]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[55]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[56]  H. Weyl The Classical Groups , 1940 .

[57]  Takayasu Ito,et al.  Theoretical Computer Science: Exploring New Frontiers of Theoretical Informatics , 2001, Lecture Notes in Computer Science.

[58]  D. Braun,et al.  Decoherence-enhanced measurements , 2009, 0902.1213.

[59]  R. Renner,et al.  Generalized Entropies , 2012, 1211.3141.

[60]  Giulio Chiribella,et al.  Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.

[61]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[62]  H. Witting,et al.  Optimale Tests und ungünstigste Verteilungen , 1967 .

[63]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[64]  Etienne Rassart A polynomiality property for Littlewood-Richardson coefficients , 2004, J. Comb. Theory, Ser. A.

[65]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[66]  K. Jacobs,et al.  Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules , 2008 .

[67]  F. Furrer,et al.  Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.

[68]  Richard D. Gill,et al.  Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.

[69]  R. Blume-Kohout Paranoid tomography: confidence regions for quantum states , 2012 .

[70]  Asymptotic estimation theory for a finite dimensional pure state model , 1997, quant-ph/9704041.

[71]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[72]  Sergio Verdú,et al.  Lossy Joint Source-Channel Coding in the Finite Blocklength Regime , 2012, IEEE Transactions on Information Theory.

[73]  A. Luis,et al.  Breaking the Heisenberg limit with inefficient detectors , 2005 .

[74]  Mankei Tsang,et al.  Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.

[75]  J. Kahn,et al.  Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.

[76]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[77]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[78]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[79]  Jonathan P Dowling,et al.  Local and global distinguishability in quantum interferometry. , 2007, Physical review letters.

[80]  Mario Berta,et al.  Continuous Variable Entropic Uncertainty Relations in the Presence of Quantum Memory , 2013 .