Stream function-velocity-magnetic induction compact difference method for the 2D steady incompressible full magnetohydrodynamic equations

Abstract In this paper, an effective and accurate numerical model that involves a suggested mathematical formulation, viz., the stream functions ( ψ and A )-velocity-magnetic induction formulation and a fourth-order compact difference algorithm is proposed for solving the two-dimensional (2D) steady incompressible full magnetohydrodynamic (MHD) flow equations. The stream functions-velocity-magnetic induction formulation of the 2D incompressible full MHD equations is able to circumvent the difficulty of handling the pressure variable in the primitive variable formulation or determining the vorticity values on the boundary in the stream function-vorticity formulation, and also ensure the divergence-free constraint condition of the magnetic field inherently. A test problem with the analytical solution, the well-studied lid-driven cavity problem in viscous fluid flow and the lid-driven MHD flow in a square cavity are performed to assess and verify the accuracy and the behavior of the method proposed currently. Numerical results for the present method are compared with the analytical solution and the other high-order accurate results. It is shown that the proposed stream function-velocity-magnetic induction compact difference method not only has the excellent performances in computational accuracy and efficiency, but also matches well with the divergence-free constraint of the magnetic field. Moreover, the benchmark solutions for the lid-driven cavity MHD flow in the presence of the aligned and transverse magnetic field for Reynolds number ( R e ) up to 5000 are provided for the wide range of magnetic Reynolds number ( R e m ) from 0.01 to 100 and Hartmann number ( H a ) up to 4000.

[1]  Murli M. Gupta High accuracy solutions of incompressible Navier-Stokes equations , 1991 .

[2]  Swapan K. Pandit,et al.  On the Use of Compact Streamfunction-Velocity Formulation of Steady Navier-Stokes Equations on Geometries beyond Rectangular , 2008, J. Sci. Comput..

[3]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[4]  Jian-Guo Liu,et al.  An energy-preserving MAC-Yee scheme for the incompressible MHD equation , 2001 .

[5]  Zhen F. Tian,et al.  An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[6]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[7]  Michel Fortin,et al.  A conservative stabilized finite element method for the magneto-hydrodynamic equations , 1999 .

[8]  P. X. Yu,et al.  Comparison of the simplified and full MHD models for laminar incompressible flow past a circular cylinder , 2017 .

[9]  Pei Xiang Yu,et al.  Compact computations based on a stream-function-velocity formulation of two-dimensional steady laminar natural convection in a square cavity. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Shrinivas Lankalapalli,et al.  An adaptive finite element method for magnetohydrodynamics , 1998, J. Comput. Phys..

[11]  Zhen F. Tian,et al.  Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field , 2013 .

[12]  S. Vimala,et al.  Numerical simulations of highly non-linear coupled full MHD equations in spherical geometry , 2012 .

[13]  Jean-Pierre Croisille,et al.  A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations , 2010, J. Sci. Comput..

[14]  B. Fornberg,et al.  A compact fourth‐order finite difference scheme for the steady incompressible Navier‐Stokes equations , 1995 .

[15]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[16]  Nobuyuki Satofuka,et al.  Higher‐order solutions of square driven cavity flow using a variable‐order multi‐grid method , 1992 .

[17]  Zhen F. Tian,et al.  A compact scheme for the streamfunction-velocity formulation of the 2D steady incompressible Navier-Stokes equations in polar coordinaes , 2013, J. Sci. Comput..

[18]  E. Erturk,et al.  Fourth‐order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[19]  Arlindo Neto Montagnoli,et al.  A generalized alternating-direction implicit scheme for incompressible magnetohydrodynamic viscous flows at low magnetic Reynolds number , 2007, Appl. Math. Comput..

[20]  E. Barragy,et al.  STREAM FUNCTION-VORTICITY DRIVEN CAVITY SOLUTION USING p FINITE ELEMENTS , 1997 .

[21]  Ramakanth Munipalli,et al.  A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh , 2007, J. Comput. Phys..

[22]  Jiten C. Kalita,et al.  A 4OEC scheme for the biharmonic steady Navier-Stokes equations in non-rectangular domains , 2015, Comput. Phys. Commun..

[23]  Ramon Codina,et al.  Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations , 2006 .

[24]  S. K. Krzeminski,et al.  Finite element approximation of biharmonic mathematical model for MHD flow using /spl Psi/-an approach , 2000 .

[25]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[26]  Hermann F. Fasel,et al.  Investigation of the stability of boundary layers by a finite-difference model of the Navier—Stokes equations , 1976, Journal of Fluid Mechanics.

[27]  Thomas B. Gatski,et al.  Review of incompressible fluid flow computations using the vorticity-velocity formulation , 1991 .

[28]  Ramakanth Munipalli,et al.  A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system , 2007, J. Comput. Phys..

[29]  J. T. Holdeman A velocity-stream function method for three-dimensional incompressible fluid flow , 2012 .

[30]  N. G. Wright,et al.  An efficient multigrid approach to solving highly recirculating flows , 1995 .

[31]  Yinnian He,et al.  Two-Level Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics , 2015, J. Sci. Comput..

[32]  Raz Kupferman,et al.  A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..

[33]  Murli M. Gupta,et al.  A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation , 2005 .

[34]  Z. F. Tian,et al.  High-order compact exponential finite difference methods for convection-diffusion type problems , 2007, J. Comput. Phys..

[35]  R. Sivakumar,et al.  Effect of magnetic Reynolds number on the two‐dimensional hydromagnetic flow around a cylinder , 2009 .

[36]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[37]  M. Tezer-Sezgin,et al.  The DRBEM solution of incompressible MHD flow equations , 2011 .

[38]  H. B. Keller,et al.  Driven cavity flows by efficient numerical techniques , 1983 .

[39]  T. V. S. Sekhar MHD flow past a sphere at low and moderate Reynolds numbers , 2003 .

[40]  Zhen F. Tian,et al.  A compact streamfunction-velocity scheme on nonuniform grids for the 2D steady incompressible Navier-Stokes equations , 2013, Comput. Math. Appl..

[41]  M. Ben-Artzi,et al.  A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .

[42]  A. I. Nesliturk,et al.  Two‐level finite element method with a stabilizing subgrid for the incompressible MHD equations , 2009 .

[43]  Santiago Badia,et al.  Approximation of the inductionless MHD problem using a stabilized finite element method , 2011, J. Comput. Phys..

[44]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[45]  Yinnian He,et al.  Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics , 2014 .