Towards multiscale reconstruction of perturbated phase from Hartmann-Shack acquisitions

Atmospheric turbulence perturbates to a great extent the optical path of incoming light from outer space thereby limiting the resolution power of capturing devices. One of the most common techniques used in astronomical imaging to compensate for this perturbation is Adaptive Optics (AO). In this paper we explore the potential of Microcanonical Multiscale Formalism (MMF) for the reconstruction of the perturbated wavefront, from the low-resolution acquisition of the turbulent phase by a Hartmann-Shack wavefront sensor used in AO. In fact, turbulent flows, although chaotic in nature, are characterised by scale hierarchy and develop cascade like structures where transfer of energy takes place from one scale to the other. We make use of MMF to infer properties along the scales of the complex signal consisting of optical phase perturbation and perform reconstruction using an appropriate wavelet decomposition associated to the cascading properties of the turbulent flow.

[1]  S. Mallat A wavelet tour of signal processing , 1998 .

[2]  Laurent M. Mugnier,et al.  Myopic deconvolution from wave-front sensing , 2001 .

[3]  Francois Rigaut,et al.  Design of the Nasmyth adaptive optics system (NAOS) of the VLT , 1998, Astronomical Telescopes and Instrumentation.

[4]  Antonio Turiel,et al.  Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study , 2006, J. Comput. Phys..

[5]  M. Defrise,et al.  Image reconstruction. , 2006, Physics in medicine and biology.

[6]  Philip R. Goode,et al.  High-Spatial-Resolution Imaging Combining High-Order Adaptive Optics, Frame Selection, and Speckle Masking Reconstruction , 2005 .

[7]  Nicolas A. Roddier Atmospheric wavefront simulation using Zernike polynomials , 1990 .

[8]  M. Garcia,et al.  Wavefront sensing , 2007, SPIE/COS Photonics Asia.

[9]  Andrea Masiero,et al.  A multiscale stochastic approach for phase screens synthesis , 2011, Proceedings of the 2011 American Control Conference.

[10]  S. Meimon,et al.  Inversion in Optical Imaging through Atmospheric Turbulence , 2010 .

[11]  E. Ribak,et al.  Turbulence-degraded wave fronts as fractal surfaces , 1994 .

[12]  T. Fusco,et al.  A multiscale approach to phase reconstruction for Adaptive Optics , 2011, 2011 10th International Workshop on Electronics, Control, Measurement and Signals.

[13]  Hussein M. Yahia,et al.  Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade , 2010, Pattern Recognit..

[14]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[15]  Jean-Marc Conan,et al.  Signal-to-noise ratio and bias of various deconvolution from wavefront sensing estimators , 1996, Optics & Photonics.

[16]  Oriol Pont,et al.  An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals , 2011, IWCIA.

[17]  H E Stanley,et al.  Scale-independent measures and pathologic cardiac dynamics. , 1998, Physical review letters.

[18]  Jérôme Primot,et al.  Turbulent Wavefront Sensing And Image Processing , 1988, Defense, Security, and Sensing.

[19]  Rosario N. Mantegna,et al.  Turbulence and financial markets , 1996, Nature.

[20]  Antonio Turiel,et al.  Inferring missing data in satellite chlorophyll maps using turbulent cascading , 2008 .

[21]  Antonio Turiel,et al.  Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I. Singularity analysis , 2008 .