Comparison of satellite based evapotranspiration estimates over the Tibetan Plateau

Abstract. The Tibetan Plateau (TP) plays a major role in regional and global climate. The understanding of latent heat (LE) flux can help to better describe the complex mechanisms and interactions between land and atmosphere. Despite its importance, accurate estimation of evapotranspiration (ET) over the TP remains challenging. Satellite observations allow for ET estimation at high temporal and spatial scales. The purpose of this paper is to provide a detailed cross-comparison of existing ET products over the TP. Six available ET products based on different approaches are included for comparison. Results show that all products capture the seasonal variability well with minimum ET in the winter and maximum ET in the summer. Regarding the spatial pattern, the High resOlution Land Atmosphere surface Parameters from Space (HOLAPS) ET demonstrator dataset is very similar to the LandFlux-EVAL dataset (a benchmark ET product from the Global Energy and Water Cycle Experiment), with decreasing ET from the south-east to north-west over the TP. Further comparison against the LandFlux-EVAL over different sub-regions that are decided by different intervals of normalised difference vegetation index (NDVI), precipitation, and elevation reveals that HOLAPS agrees best with LandFlux-EVAL having the highest correlation coefficient (R) and the lowest root mean square difference (RMSD). These results indicate the potential for the application of the HOLAPS demonstrator dataset in understanding the land–atmosphere–biosphere interactions over the TP. In order to provide more accurate ET over the TP, model calibration, high accuracy forcing dataset, appropriate in situ measurements as well as other hydrological data such as runoff measurements are still needed.

[1]  K. Lau,et al.  Asian summer monsoon anomalies induced by aerosol direct forcing : the role of the Tibetan Plateau , 2006 .

[2]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[3]  M. Mccabe,et al.  Multi-site evaluation of terrestrial evaporation models using FLUXNET data , 2014 .

[4]  Alexander Loew,et al.  Evaluation of Daytime Evaporative Fraction from MODIS TOA Radiances Using FLUXNET Observations , 2014, Remote. Sens..

[5]  Xuefeng Cui,et al.  Recent land cover changes on the Tibetan Plateau: a review , 2009 .

[6]  N. Verhoest,et al.  El Niño-La Niña cycle and recent trends in continental evaporation , 2014 .

[7]  S. Running,et al.  A review of remote sensing based actual evapotranspiration estimation , 2016 .

[8]  Marco Mancini,et al.  Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux , 2012 .

[9]  Yi Y. Liu,et al.  Multi-decadal trends in global terrestrial evapotranspiration and its components , 2016, Scientific Reports.

[10]  R. Dickinson,et al.  A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability , 2011 .

[11]  Toshio Koike,et al.  Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat‐7 Enhanced Thematic Mapper data over the central Tibetan Plateau area , 2006 .

[12]  Shunlin Liang,et al.  Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets: 2. Spatiotemporal analysis , 2013 .

[13]  Jinzhong Min,et al.  Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes , 2014 .

[14]  Yaoming Ma,et al.  Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau , 2014 .

[15]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms , 2015 .

[16]  Matthew F. McCabe,et al.  The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data , 2015 .

[17]  S. Seneviratne,et al.  Systematic land climate and evapotranspiration biases in CMIP5 simulations , 2014, Geophysical research letters.

[18]  Chungu Lu,et al.  World water tower: An atmospheric perspective , 2008 .

[19]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[20]  Z. Su The Surface Energy Balance System ( SEBS ) for estimation of turbulent heat fluxes , 2002 .

[21]  Alexander Loew,et al.  Estimation of evapotranspiration from MODIS TOA radiances in the Poyang Lake basin, China , 2012 .

[22]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[23]  Jun Qin,et al.  Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review , 2014 .

[24]  Tandong Yao,et al.  ROOF OF THE WORLD: Tibetan Observation and Research Platform , 2008 .

[25]  Toshio Koike,et al.  Surface Flux Parameterization in the Tibetan Plateau , 2003 .

[26]  S. Seneviratne,et al.  Global intercomparison of 12 land surface heat flux estimates , 2011 .

[27]  Chengfeng Li,et al.  Mechanism of Heating and the Boundary Layer over the Tibetan Plateau , 1994 .

[28]  Shunlin Liang,et al.  Characterizing the surface radiation budget over the Tibetan Plateau with ground‐measured, reanalysis, and remote sensing data sets: 1. Methodology , 2013 .

[29]  Mark C. Serreze,et al.  Climate change and variability using European Centre for Medium‐Range Weather Forecasts reanalysis (ERA‐40) temperatures on the Tibetan Plateau , 2005 .

[30]  M. Wild,et al.  Spatial representativeness of ground‐based solar radiation measurements , 2013 .

[31]  Jun Qin,et al.  Some practical notes on the land surface modeling in the Tibetan Plateau , 2009 .

[32]  Markus Reichstein,et al.  Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis , 2013 .

[33]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[34]  Jian Peng,et al.  High-resolution land surface fluxes from satellite and reanalysis data (HOLAPS v1.0): evaluation and uncertainty assessment , 2016 .

[35]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[36]  S. Liang,et al.  Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data , 2013 .

[37]  M. Bierkens,et al.  Climate Change Will Affect the Asian Water Towers , 2010, Science.

[38]  J. Qiu China: The third pole , 2008, Nature.

[39]  G. Wu,et al.  Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia , 2005 .

[40]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets , 2015 .

[41]  Eric F. Wood,et al.  Multi‐model, multi‐sensor estimates of global evapotranspiration: climatology, uncertainties and trends , 2011 .

[42]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[43]  Martha C. Anderson,et al.  Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery , 2010 .

[44]  S. Seneviratne,et al.  Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations , 2011 .

[45]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[46]  Toshio Koike,et al.  Regionalization of Surface Fluxes over Heterogeneous Landscape of the Tibetan Plateau by Using Satellite Remote Sensing Data , 2003 .

[47]  Y. Ma,et al.  Development of a 10-year ( 2001 – 2010 ) 0 . 1 ◦ data set of land-surface energy balance for mainland China , 2014 .

[48]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[49]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[50]  Xuelong Chen,et al.  Development of a 10-year (2001–2010) 0.1° data set of land-surface energy balance for mainland China , 2014 .

[51]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[52]  Xuelong Chen,et al.  Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in situ data , 2011 .

[53]  Michael Borsche,et al.  How representative are instantaneous evaporative fraction measurements of daytime fluxes , 2013 .

[54]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[55]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[56]  A. Friend,et al.  Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau , 2011 .

[57]  Y. Hong,et al.  Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration , 2015, Scientific Reports.

[58]  A. Monin,et al.  Basic laws of turbulent mixing in the surface layer of the atmosphere , 2009 .

[59]  Yanhong Tang,et al.  Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau , 2007 .

[60]  S. Running,et al.  A continuous satellite‐derived global record of land surface evapotranspiration from 1983 to 2006 , 2010 .

[61]  Yu Zhang,et al.  An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau , 2013 .

[62]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[63]  Xuelong Chen,et al.  Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau , 2012 .