Dielectric concentrator for Cherenkov radiation.

We report on a dielectric target that concentrates Cherenkov radiation into a small spatial area. In contrast to traditional devices, this target can focus almost all of the radiation without using additional lenses or mirrors. We consider the case where radiation is produced by a point charge moving along the axis of a cylindrical channel inside an axially symmetrical target. The specific form of the target is determined using the laws of ray optics. The field is calculated using an aperture integration method that can determine the field near the focus. Typical field plots and the spatial distribution of the field outside the target are presented. We demonstrate that at terahertz frequencies, this concentrator can increase the field magnitude by up to at least 2 orders of magnitude relative to that on the surface of the target.