Breaking spaces and forms for the DPG method and applications including Maxwell equations

Discontinuous Petrov-Galerkin (DPG) methods are made easily implementable using "broken" test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and various forms in between.

[1]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[2]  Larry L. Schumaker,et al.  Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .

[3]  Haijun Wu,et al.  An Absolutely Stable Discontinuous Galerkin Method for the Indefinite Time-Harmonic Maxwell Equations with Large Wave Number , 2012, SIAM J. Numer. Anal..

[4]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[5]  Norbert Heuer,et al.  Note on discontinuous trace approximation in the practical DPG method , 2014, Comput. Math. Appl..

[6]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[7]  Necas Jindrich Les Méthodes directes en théorie des équations elliptiques , 2017 .

[8]  Nathan V. Roberts,et al.  The DPG method for the Stokes problem , 2014, Comput. Math. Appl..

[9]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[10]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[11]  Leszek Demkowicz,et al.  Wavenumber Explicit Analysis of a DPG Method for the Multidimensional Helmholtz Equation , 2011 .

[12]  Jay Gopalakrishnan,et al.  Convergence rates of the DPG method with reduced test space degree , 2014, Comput. Math. Appl..

[13]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[14]  Leszek F. Demkowicz,et al.  A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..

[15]  Carsten Carstensen,et al.  Low-order dPG-FEM for an elliptic PDE , 2014, Comput. Math. Appl..

[16]  Rob Stevenson,et al.  A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form , 2015 .

[17]  Graham F. Carey,et al.  Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems , 2014, Adv. Model. Simul. Eng. Sci..

[18]  Paola Causin,et al.  A Discontinuous Petrov-Galerkin Method with Lagrangian Multipliers for Second Order Elliptic Problems , 2005, SIAM J. Numer. Anal..

[19]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[20]  Bernardo Cockburn,et al.  A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[21]  T. Strouboulis,et al.  How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition , 1997 .

[22]  Brendan Keith,et al.  Orientation embedded high order shape functions for the exact sequence elements of all shapes , 2015, Comput. Math. Appl..

[23]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[24]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[25]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables , 1986 .

[26]  Carsten Carstensen,et al.  A Posteriori Error Control for DPG Methods , 2014, SIAM J. Numer. Anal..

[27]  Norbert Heuer,et al.  Robust DPG Method for Convection-Dominated Diffusion Problems , 2013, SIAM J. Numer. Anal..

[28]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[29]  Leszek Demkowicz,et al.  Various Variational Formulations and Closed Range Theorem , 2022 .

[30]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[31]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[32]  Joachim Schöberl,et al.  Polynomial extension operators. Part III , 2012, Math. Comput..

[33]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable , 1986 .

[34]  I. Babuska Error-bounds for finite element method , 1971 .

[35]  Norbert Heuer,et al.  A robust DPG method for convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-dependent test norms , 2014, Comput. Math. Appl..

[36]  John W. Barrett,et al.  Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems , 1984 .