Repeated exposure of nosocomial pathogens to silver does not select for silver resistance but does impact ciprofloxacin susceptibility.

[1]  A. Nokhodchi,et al.  Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. , 2021, Drug discovery today.

[2]  S. Srikumar,et al.  Silver Nanoparticles Induce a Triclosan-Like Antibacterial Action Mechanism in Multi-Drug Resistant Klebsiella pneumoniae , 2020, bioRxiv.

[3]  M. Zaman,et al.  Development and selection of low-level multi-drug resistance over an extended range of sub-inhibitory ciprofloxacin concentrations in Escherichia coli , 2020, Scientific Reports.

[4]  Adam M. Feist,et al.  Genetic Determinants Enabling Medium-Dependent Adaptation to Nafcillin in Methicillin-Resistant Staphylococcus aureus , 2020, mSystems.

[5]  A. Kędziora,et al.  Consequences Of Long-Term Bacteria’s Exposure To Silver Nanoformulations With Different PhysicoChemical Properties , 2020, International journal of nanomedicine.

[6]  Yan Shen,et al.  Risk factors for quinolone-resistant Escherichia coli infection: a systematic review and meta-analysis , 2020, Antimicrobial Resistance & Infection Control.

[7]  S. Choi,et al.  Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEF-OprN Efflux Pump in Pseudomonas aeruginosa , 2019, Molecules and cells.

[8]  H. Sedigh Ebrahim-Saraie,et al.  Prevalence of quinolone-resistant uropathogenic Escherichia coli in a tertiary care hospital in south Iran , 2019, Infection and drug resistance.

[9]  N. Hatano,et al.  Identification of specific protein amino acid substitutions of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli ST131: a proteomics approach using mass spectrometry , 2019, Scientific Reports.

[10]  R. Barnard,et al.  Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017) , 2018, Antibiotics.

[11]  J. Klumpp,et al.  Chromosomal Sil system contributes to silver resistance in E. coli ATCC 8739 , 2018, BioMetals.

[12]  J. Sutton,et al.  Role of bacterial efflux pumps in biofilm formation , 2018, The Journal of antimicrobial chemotherapy.

[13]  A. R. Fernandes,et al.  Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans” , 2018, Front. Microbiol..

[14]  M. Zariwala,et al.  Fabrication of inhaled hybrid silver/ciprofloxacin nanoparticles with synergetic effect against Pseudomonas aeruginosa , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[15]  G. Chua,et al.  Using a Chemical Genetic Screen to Enhance Our Understanding of the Antibacterial Properties of Silver , 2018, Genes.

[16]  Daniel J. Blankenberg,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update , 2018, Nucleic Acids Res..

[17]  Shouguang Jin,et al.  PutA Is Required for Virulence and Regulated by PruR in Pseudomonas aeruginosa , 2018, Front. Microbiol..

[18]  L. Zechiedrich,et al.  Wicked: The untold story of ciprofloxacin , 2018, PLoS pathogens.

[19]  A. Kędziora,et al.  Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents , 2018, International journal of molecular sciences.

[20]  M. Ouellette,et al.  Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. , 2017, The Lancet. Infectious diseases.

[21]  C. Randall,et al.  Cryptic silver resistance is prevalent and readily activated in certain Gram-negative pathogens , 2017, The Journal of antimicrobial chemotherapy.

[22]  S. Kaushik,et al.  Antibacterial Synergy of Silver Nanoparticles with Gentamicin and Chloramphenicol against Enterococcus faecalis , 2017, Pharmacognosy magazine.

[23]  Qi Ying Lean,et al.  Interplay of the Quality of Ciprofloxacin and Antibiotic Resistance in Developing Countries , 2017, Front. Pharmacol..

[24]  Sojib Bin Zaman,et al.  A Review on Antibiotic Resistance: Alarm Bells are Ringing , 2017, Cureus.

[25]  M. Ishii,et al.  Expression of multiple cbb3 cytochrome c oxidase isoforms by combinations of multiple isosubunits in Pseudomonas aeruginosa , 2016, Proceedings of the National Academy of Sciences.

[26]  Tingying Xia,et al.  Signaling by the heavy‐metal sensor CusS involves rearranged helical interactions in specific transmembrane regions , 2016, Molecular microbiology.

[27]  R. Powers,et al.  Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus. , 2016, Journal of proteome research.

[28]  Nina Khanna,et al.  Preventing Implant-Associated Infections by Silver Coating , 2016, Antimicrobial Agents and Chemotherapy.

[29]  S. Das,et al.  Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. , 2016, ACS applied materials & interfaces.

[30]  R. Davies,et al.  Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens , 2015, Antibiotics.

[31]  G. Kahlmeter,et al.  Antimicrobial Resistance of Escherichia coli Causing Uncomplicated Urinary Tract Infections: A European Update for 2014 and Comparison with 2000 and 2008 , 2015, Infectious Diseases and Therapy.

[32]  V. Zucolotto,et al.  Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria , 2015, Journal of Nanobiotechnology.

[33]  M. Ryan,et al.  Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung , 2015 .

[34]  Hongtao Yu,et al.  Synergistic Antibacterial Effect of Silver Nanoparticles Combined with Ineffective Antibiotics on Drug Resistant Salmonella typhimurium DT104 , 2015, Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews.

[35]  Lisa C. Crossman,et al.  Bacterial antimicrobial metal ion resistance. , 2015, Journal of medical microbiology.

[36]  H. Antelmann,et al.  Thiol-based redox switches in prokaryotes , 2015, Biological chemistry.

[37]  Jeffrey E. Barrick,et al.  Rapid evolution of silver nanoparticle resistance in Escherichia coli , 2015, Front. Genet..

[38]  N. Jackson,et al.  Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms , 2015, The Journal of antimicrobial chemotherapy.

[39]  R. Austin,et al.  Emergence of antibiotic resistance from multinucleated bacterial filaments , 2014, Proceedings of the National Academy of Sciences.

[40]  T. Pradeep,et al.  Antimicrobial silver: An unprecedented anion effect , 2014, Scientific Reports.

[41]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[42]  N. Waterfield,et al.  Inactivation of the Antibacterial and Cytotoxic Properties of Silver Ions by Biologically Relevant Compounds , 2014, PloS one.

[43]  E. Torrents,et al.  Ribonucleotide reductases: essential enzymes for bacterial life , 2014, Front. Cell. Infect. Microbiol..

[44]  S. Gopal,et al.  Revamping the role of biofilm regulating operons in device-associated Staphylococci and Pseudomonas aeruginosa. , 2014, Indian journal of medical microbiology.

[45]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[46]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[47]  J. Maillard,et al.  Silver as an antimicrobial: facts and gaps in knowledge , 2013, Critical reviews in microbiology.

[48]  Alexandro Rodríguez-Rojas,et al.  Antibiotics and antibiotic resistance: a bitter fight against evolution. , 2013, International journal of medical microbiology : IJMM.

[49]  S. Silver,et al.  Antimicrobial silver: uses, toxicity and potential for resistance , 2013, BioMetals.

[50]  S. Gebhard,et al.  Identification of Regions Important for Resistance and Signalling within the Antimicrobial Peptide Transporter BceAB of Bacillus subtilis , 2013, Journal of bacteriology.

[51]  Richard Smith,et al.  The true cost of antimicrobial resistance , 2013, BMJ.

[52]  Matthias Epple,et al.  Silver as antibacterial agent: ion, nanoparticle, and metal. , 2013, Angewandte Chemie.

[53]  S. Rasmussen,et al.  Identification of acquired antimicrobial resistance genes , 2012, The Journal of antimicrobial chemotherapy.

[54]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[55]  J. Lindholt,et al.  Rifampicin-soaked silver polyester versus expanded polytetrafluoro-ethylene grafts for in situ replacement of infected grafts in a porcine randomised controlled trial. , 2012, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[56]  J. Karlowsky,et al.  In Vitro Antimicrobial Resistance of Urinary Escherichia coli Isolates among U.S. Outpatients from 2000 to 2010 , 2012, Antimicrobial Agents and Chemotherapy.

[57]  M Zeder,et al.  A Novel Algorithm for the Determination of Bacterial Cell Volumes That is Unbiased by Cell Morphology , 2011, Microscopy and Microanalysis.

[58]  H. Goossens,et al.  Society's failure to protect a precious resource: antibiotics , 2011, The Lancet.

[59]  I. Booth,et al.  KefF, the Regulatory Subunit of the Potassium Efflux System KefC, Shows Quinone Oxidoreductase Activity , 2011, Journal of bacteriology.

[60]  J. Queiroz,et al.  Bacteriostatic versus bactericidal activity of ciprofloxacin in Escherichia coli assessed by flow cytometry using a novel far-red dye , 2011, The Journal of Antibiotics.

[61]  G. O’Toole Microtiter dish biofilm formation assay. , 2011, Journal of visualized experiments : JoVE.

[62]  Thorsten Mascher,et al.  Peptide Antibiotic Sensing and Detoxification Modules of Bacillus subtilis , 2010, Antimicrobial Agents and Chemotherapy.

[63]  G L French,et al.  The continuing crisis in antibiotic resistance. , 2010, International journal of antimicrobial agents.

[64]  R. Bushra,et al.  Resistance pattern of ciprofloxacin against different pathogens. , 2010, Oman medical journal.

[65]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[66]  C. Haidaris,et al.  Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase. , 2009, Canadian journal of microbiology.

[67]  J. Alexander,et al.  History of the medical use of silver. , 2009, Surgical infections.

[68]  M. Loessner,et al.  Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material , 2009, Applied and Environmental Microbiology.

[69]  M. Souli,et al.  Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. , 2008, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[70]  Thorsten Mascher,et al.  Bacitracin sensing in Bacillus subtilis , 2008, Molecular microbiology.

[71]  Y. Park,et al.  Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli , 2008, Applied and Environmental Microbiology.

[72]  T. Galloway,et al.  Quantification of changing Pseudomonas aeruginosa sodA, htpX and mt gene abundance in response to trace metal toxicity: a potential in situ biomarker of environmental health. , 2007, FEMS microbiology ecology.

[73]  I. Chopra,et al.  The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? , 2007, The Journal of antimicrobial chemotherapy.

[74]  P. Gulbrandsen,et al.  Use of rifampicin and ciprofloxacin combination therapy after surgical debridement in the treatment of early manifestation prosthetic joint infections. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[75]  P. Drake,et al.  Exposure-related health effects of silver and silver compounds: a review. , 2005, The Annals of occupational hygiene.

[76]  S. Percival,et al.  Bacterial resistance to silver in wound care. , 2005, The Journal of hospital infection.

[77]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[78]  S. Foster,et al.  Role of a Cysteine Synthase in Staphylococcus aureus , 2004, Journal of bacteriology.

[79]  J. Blondeau Fluoroquinolones: mechanism of action, classification, and development of resistance. , 2004, Survey of ophthalmology.

[80]  A. Schaeffer The expanding role of fluoroquinolones. , 2003, The American journal of medicine.

[81]  J. Mattick,et al.  Quorum Sensing Is Not Required for Twitching Motility in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[82]  M. Saier,et al.  Influence of threonine exporters on threonine production in Escherichia coli , 2002, Applied Microbiology and Biotechnology.

[83]  D. König,et al.  Treatment of staphylococcal implant infection with rifampicin-ciprofloxacin in stable implants , 2001, Archives of Orthopaedic and Trauma Surgery.

[84]  A. Peschel,et al.  The d-Alanine Residues ofStaphylococcus aureus Teichoic Acids Alter the Susceptibility to Vancomycin and the Activity of Autolytic Enzymes , 2000, Antimicrobial Agents and Chemotherapy.

[85]  K. Köhrer,et al.  Multiple mutations conferring ciprofloxacin resistance in Staphylococcus aureus demonstrate long-term stability in an antibiotic-free environment. , 2000, The Journal of antimicrobial chemotherapy.

[86]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[87]  W. Hiller,et al.  Silver and Its Compounds , 1999 .

[88]  H. Kalbacher,et al.  Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides* , 1999, The Journal of Biological Chemistry.

[89]  Kazuaki Matsui,et al.  Molecular basis for resistance to silver cations in Salmonella , 1999, Nature Medicine.

[90]  P E Ochsner,et al.  Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. , 1998, JAMA.

[91]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[92]  L. Baddour,et al.  Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices , 1985, Journal of clinical microbiology.

[93]  M. Swartz,et al.  SALMONELLA TYPHIMURIUM RESISTANT TO SILVER NITRATE, CHLORAMPHENICOL, AND AMPICILLIN A New Threat in Burn Units ? , 1975, The Lancet.

[94]  C. Jelenko Silver Nitrate Resistant E. Coli: Report of Case , 1969, Annals of surgery.

[95]  W. Patrick,et al.  Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. , 2019, Journal of medical microbiology.

[96]  R. Zbořil,et al.  Bacterial resistance to silver nanoparticles and how to overcome it , 2017, Nature Nanotechnology.

[97]  A. Hofman,et al.  Risk factors for resistance to ciprofloxacin in community-acquired urinary tract infections due to Escherichia coli in an elderly population , 2017, The Journal of antimicrobial chemotherapy.

[98]  I. Chopra,et al.  The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. , 2013, The Journal of antimicrobial chemotherapy.

[99]  P. Pecile,et al.  Ciprofloxacin Resistance in Clinical Isolates of Pseudomonas aeruginosa from Italian Patients , 2012, Drugs.

[100]  R. Raz,et al.  Changes in Susceptibility to Ciprofloxacin in a Community in Northern Israel , 2012, Drugs.

[101]  Qingshan Shi,et al.  Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli , 2009, Applied Microbiology and Biotechnology.

[102]  A. Siitonen,et al.  Increasing fluoroquinolone resistance in salmonella serotypes in Finland during 1995-1997. , 1999, The Journal of antimicrobial chemotherapy.

[103]  P. S. Jarrett,et al.  Antibacterial Silver , 1994, Metal-based drugs.

[104]  J. Fry,et al.  An assessment of methods for measuring volumes of planktonic bacteria, with particular reference to television image analysis , 1985 .