Endogeny for the Logistic Recursive Distributional Equation

In this article we prove the endogeny and bivariate uniqueness property for a particular “max-type” recursive distributional equation (RDE). The RDE we consider is the so called logistic RDE, which appears in the proof of the ζ(2)-limit of the random assignment problem using the local weak convergence method proved by D. Aldous [Probab. Theory Related Fields 93 (1992)(4), 507 – 534]. This article provides a non-trivial application of the general theory developed by D. Aldous and A. Bandyopadhyay [Ann. Appl. Probab. 15 (2005)(2), 1047 – 1110]. The proofs involves analytic arguments, which illustrate the need to develop more analytic tools for studying such max-type RDEs.

[1]  Johan Wästlund The mean field traveling salesman and related problems , 2010 .

[2]  G. F. Simmons Differential Equations With Applications and Historical Notes , 1972 .

[3]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[4]  D. Aldous,et al.  A survey of max-type recursive distributional equations , 2004, math/0401388.

[5]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.

[6]  M. Mézard,et al.  On the solution of the random link matching problems , 1987 .

[7]  P. Spreij Probability and Measure , 1996 .

[8]  D. Gamarnik,et al.  Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method , 2006 .

[9]  U. Rösler A fixed point theorem for distributions , 1992 .

[10]  Uwe Rösler,et al.  The contraction method for recursive algorithms , 2001, Algorithmica.

[11]  D. Vere-Jones,et al.  Elementary theory and methods , 2003 .

[12]  J. Steele Probability theory and combinatorial optimization , 1987 .

[13]  J. Doob Stochastic processes , 1953 .

[14]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[15]  D. Aldous Asymptotics in the random assignment problem , 1992 .

[16]  Antar Bandyopadhyay A Necessary and Sufficient Condition for the Tail-Triviality of a Recursive Tree Process ∗ , 2005, math/0511203.

[17]  D. Aldous The percolation process on a tree where infinite clusters are frozen , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[19]  David Gamarnik,et al.  Counting without sampling: new algorithms for enumeration problems using statistical physics , 2006, SODA '06.

[20]  D. Gamarnik,et al.  Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models , 2008 .

[21]  Svante Janson,et al.  A characterization of the set of fixed points of the Quicksort transformation , 2000, ArXiv.