An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty

Abstract In this paper, parameters of a fractional-order chaotic system are identified via a robust recursive error prediction method in presence of uncertainty. A generalized ARX structure has obtained by discretization of a continuous fractional-order differential equation defines the identification model. After identifying parameters of system, we use concept of active control method to synchronize two identified fractional-order chaotic systems. The validity of results are demonstrated through an example and also compared with other method.

[1]  Ling Wang,et al.  Parameter estimation for chaotic systems by particle swarm optimization , 2007 .

[2]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[3]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[4]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[5]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[6]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[7]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[8]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[9]  Yinggan Tang,et al.  Parameter estimation for time-delay chaotic system by particle swarm optimization , 2009 .

[10]  Xiang-Jun Wu,et al.  Chaos in the fractional-order Lorenz system , 2009, Int. J. Comput. Math..

[11]  Xia Huang,et al.  Synchronization of a chaotic fractional order economical system with active control , 2011 .

[12]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[13]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[14]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[15]  Jing Bai,et al.  Modified projective synchronization of uncertain fractional order hyperchaotic systems , 2012 .

[16]  Sachin Bhalekar,et al.  Chaos in fractional ordered Liu system , 2010, Comput. Math. Appl..

[17]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[18]  Jianying Yang,et al.  Chaos synchronization for a class of nonlinear oscillators with fractional order , 2010 .

[19]  Nathalie Corson,et al.  Synchronization of Chaotic fractional-Order Systems via Linear Control , 2010, Int. J. Bifurc. Chaos.

[20]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[21]  Ling Wang,et al.  An effective hybrid PSOSA strategy for optimization and its application to parameter estimation , 2006, Appl. Math. Comput..

[22]  Ji-Huan He A new approach to nonlinear partial differential equations , 1997 .

[23]  Weihua Deng,et al.  Synchronization of Chaotic Fractional Chen System , 2005 .

[24]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[25]  A. E. Matouk,et al.  Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit , 2011 .