Quantum-Dot Optoelectronic Devices

Self-organized In(Ga)As/Ga(Al)As quantum dots have emerged as useful nanostructures that can be epitaxially grown and incorporated in the active region of devices. The near pyramidal dots exhibit properties arising from the three-dimensional quantum confinement and from the coherent built-in strain. The properties and current state-of-the-art characteristics of quantum-dot junction lasers, intersublevel infrared detectors, optical amplifiers, and microcavity devices are briefly reviewed. It is evident that self-organized quantum-dot optoelectronic devices demonstrate properties that are sometimes unique and often surpass the characteristics of existing devices.

[1]  Anupam Madhukar,et al.  Nature of strained InAs three‐dimensional island formation and distribution on GaAs(100) , 1994 .

[2]  G. Ariyawansa,et al.  A resonant tunneling quantum-dot infrared photodetector , 2005, IEEE Journal of Quantum Electronics.

[3]  Jamie D. Phillips,et al.  Room temperature luminescence from self-organized quantum dots with high size uniformity , 1997 .

[4]  James A. Lott,et al.  Vertical cavity lasers based on vertically coupled quantum dots , 1997 .

[5]  Jelena Vuckovic,et al.  Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot , 2003 .

[6]  Pallab Bhattacharya,et al.  Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots , 2005 .

[7]  Subhananda Chakrabarti,et al.  Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature , 2005 .

[8]  Kristian M. Groom,et al.  Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .

[9]  Jamie D. Phillips,et al.  Room-temperature operation of In0.4Ga0.6As/GaAs self-organised quantum dot lasers , 1996 .

[10]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[11]  Yasuhiko Arakawa,et al.  Progress in GaN-based quantum dots for optoelectronics applications , 2002 .

[12]  James L. Merz,et al.  Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots , 1994 .

[13]  A. P. Vasil’ev,et al.  High performance quantum dot lasers on GaAs substrates operating in 1.5 /spl mu/m range , 2003 .

[14]  Daniel Wasserman,et al.  Midinfrared luminescence from InAs quantum dots in unipolar devices , 2002 .

[15]  David T. D. Childs,et al.  Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots , 2001 .

[16]  Anupam Madhukar,et al.  Punctuated island growth: An approach to examination and control of quantum dot density, size, and shape evolution , 1999 .

[17]  Johann Peter Reithmaier,et al.  Time-resolved chirp in an InAs∕InP quantum-dash optical amplifier operating with 10Gbit∕s data , 2005 .

[18]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[19]  Nikolai N. Ledentsov,et al.  InAs/GaAs quantum dots radiative recombination from zero‐dimensional states , 1995 .

[20]  J. M. Rorison,et al.  Quantum Dot Heterostructures , 2000 .

[21]  Y. Arakawa,et al.  Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers , 2005, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[22]  S.J. Chang,et al.  1.3-/spl mu/m InAs-InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE , 2006, IEEE Photonics Technology Letters.

[23]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[24]  D. Bouwmeester,et al.  Self-tuned quantum dot gain in photonic crystal lasers. , 2005, Physical review letters.

[25]  Jamie D. Phillips,et al.  Linear and quadratic electro-optic coefficients of self-organized In0.4Ga0.6As/GaAs quantum dots , 1998 .

[26]  John E. Bowers,et al.  Room temperature lasing from InGaAs quantum dots , 1996 .

[27]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[28]  Subhananda Chakrabarti,et al.  Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors , 2002 .

[29]  K. Hinzer,et al.  Red-Emitting Semiconductor Quantum Dot Lasers , 1996, Science.

[30]  Z. Mi,et al.  Analysis of the Linewidth-Enhancement Factor of Long-Wavelength Tunnel-Injection Quantum-Dot Lasers , 2007, IEEE Journal of Quantum Electronics.

[31]  D. Bimberg,et al.  Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-μm-wavelength at room temperature , 2001 .

[32]  S.C. Wang,et al.  Single-mode monolithic quantum-dot VCSEL in 1.3 /spl mu/m with sidemode suppression ratio over 30 dB , 2006, IEEE Photonics Technology Letters.

[33]  S. Fathpour,et al.  High-speed 1.3 μm1.3μm tunnel injection quantum-dot lasers , 2005 .

[34]  Tomoyuki Akiyama,et al.  Pattern-effect-free semiconductor optical amplifier achieved using quantum dots , 2002 .

[35]  Egeler,et al.  Electron relaxation in quantum dots by means of Auger processes. , 1992, Physical review. B, Condensed matter.

[36]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[37]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[38]  Jasprit Singh,et al.  Rapid carrier relaxation in In 0.4 Ga 0.6 A s / G a A s quantum dots characterized by differential transmission spectroscopy , 1998 .

[39]  S.B. Rafol,et al.  High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity , 2004, IEEE Photonics Technology Letters.

[40]  Sugawara,et al.  Phonon bottleneck in self-formed InxGa1-xAs/GaAs quantum dots by electroluminescence and time-resolved photoluminescence. , 1996, Physical review. B, Condensed matter.

[41]  Victor M. Ustinov,et al.  InAs/InGaAsN quantum dots emitting at 1.55 μm grown by molecular beam epitaxy , 2003 .

[42]  Alexander V. Uskov,et al.  Auger carrier capture kinetics in self-assembled quantum dot structures , 1998 .

[43]  Yasuhiko Arakawa,et al.  Room temperature continuous-wave lasing in photonic crystal nanocavity. , 2006, Optics express.

[44]  Peichen Yu,et al.  An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode , 2002 .

[45]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[46]  Anupam Madhukar,et al.  Normal-incidence voltage-tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots , 2002 .

[47]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[48]  Hiroshi Ishikawa,et al.  Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators , 2002 .

[49]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[50]  Mikhail V. Maximov,et al.  High-power 1.3μm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system , 2005 .

[51]  Akio Sasaki,et al.  Strain energy and critical thickness of heteroepitaxial InGaAs layers on GaAs substrate , 1991 .

[52]  Heinz Schweizer,et al.  Quantum Dots and Quantum Wires with High Optical Quality by Implantation-Induced Intermixing , 1993 .

[53]  Hiroshi Ishikawa,et al.  Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1-x As/GaAs quantum dot lasers , 2000 .

[54]  S. Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[55]  Y. Wang,et al.  High-frequency modulation characteristics of 1.3-/spl mu/m InGaAs quantum dot lasers , 2004, IEEE Photonics Technology Letters.

[56]  Z. Mi,et al.  Electrically Injected Quantum-Dot Photonic Crystal Microcavity Light-Emitting Arrays With Air-Bridge Contacts , 2006, IEEE Photonics Technology Letters.

[57]  H. Deng,et al.  1.15-μm wavelength oxide-confined quantum-dot vertical-cavity surface-emitting laser , 1998, IEEE Photonics Technology Letters.

[58]  Duncan G. Steel,et al.  Nonlinear optical and electro-optic properties of InAs/GaAs self-organized quantum dots , 2001 .

[59]  Mitsuru Sugawara,et al.  Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs∕GaAs quantum-dot lasers , 2005 .

[60]  Xiangkun Zhang,et al.  Tunneling injection lasers: a new class of lasers with reduced hot carrier effects , 1996 .

[61]  Val Zwiller,et al.  Growth and characterization of single quantum dots emitting at 1300 nm , 2005 .

[62]  A. G. U. Perera,et al.  Terahertz detection with tunneling quantum dot intersublevel photodetector , 2006 .

[63]  J. Laskar,et al.  In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties , 1999 .

[64]  Dieter Bimberg,et al.  High-power quantum-dot lasers at 1100 nm , 2000 .

[65]  Pallab Bhattacharya,et al.  Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime , 1988 .

[66]  Masahiro Asada,et al.  Threshold current density of GaInAsP/InP quantum-box lasers , 1989 .

[67]  Hiroyuki Sakaki,et al.  Density and size control of self-assembled InAs quantum dots: preparation of very low-density dots by post-annealing , 2002 .

[68]  James L. Merz,et al.  Visible luminescence from semiconductor quantum dots in large ensembles , 1995 .

[69]  Jasprit Singh,et al.  Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots , 2002 .

[70]  Y. Arakawa,et al.  An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots , 2005, IEEE Photonics Technology Letters.

[71]  Weidong Zhou,et al.  Characteristics of a photonic bandgap single defect microcavity electroluminescent device , 2001 .

[72]  Sasan Fathpour,et al.  High-speed quantum dot lasers , 2005 .

[73]  Nikolai N. Ledentsov,et al.  Arrays of Two-Dimensional Islands Formed by Submonolayer Insertions: Growth, Properties, Devices , 2001 .

[74]  R. J. Joyce,et al.  Dot lithography for zero‐dimensional quantum wells using focused ion beams , 1987 .

[75]  David T. D. Childs,et al.  1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density , 2004 .

[76]  S. Deubert,et al.  Improved performance of MBE grown quantum dot lasers with asymmetric dots in a well design emitting near 1.3 /spl mu/m , 2002, International Conference on Molecular Bean Epitaxy.

[78]  I. I. Novikov,et al.  Temperature dependence of the effective coefficient of Auger recombination in 1.3 μm InAs/GaAs QD lasers , 2005 .

[79]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[80]  Charles Santori,et al.  Enhanced single-photon emission from a quantum dot in a micropost microcavity , 2003 .

[81]  J. Yang,et al.  Growth and characteristics of ultralow threshold 1.45 μm metamorphic InAs tunnel injection quantum dot lasers on GaAs , 2006 .

[82]  J. Laskar,et al.  Temperature-dependent measurement of Auger recombination in self-organized In0.4Ga0.6As/GaAsIn0.4Ga0.6As/GaAs quantum dots , 2001 .

[83]  Diana L. Huffaker,et al.  Ground state lasing from a quantum-dot oxide-confined vertical-cavity surface-emitting laser , 1999 .

[84]  Ichiro Ogura,et al.  Room‐temperature lasing operation of a quantum‐dot vertical‐cavity surface‐emitting laser , 1996 .

[85]  Harri Lipsanen,et al.  Self-assembled GaIn(N)As quantum dots: Enhanced luminescence at 1.3 μm , 2001 .

[86]  S. Fathpour,et al.  Small-signal modulation characteristics of p-doped 1.1- and 1.3-/spl mu/m quantum-dot lasers , 2005, IEEE Photonics Technology Letters.

[87]  Charles W. Tu,et al.  Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs , 2000 .

[88]  D. Deppe,et al.  Low-threshold high-T/sub 0/ 1.3-/spl mu/m InAs quantum-dot lasers due to p-type modulation doping of the active region , 2002, IEEE Photonics Technology Letters.

[89]  G. Bastard,et al.  Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. , 1994, Physical review letters.

[90]  Jasprit Singh,et al.  Photoluminescence and time-resolved photoluminescence characteristics of InxGa(1−x)As/GaAs self-organized single- and multiple-layer quantum dot laser structures , 1997 .

[91]  Jasprit Singh,et al.  Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots , 2002 .

[92]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[93]  Bernard Jusserand,et al.  Structural and optical properties of high quality InAs/GaAs short‐period superlattices grown by migration‐enhanced epitaxy , 1989 .

[94]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[95]  N. Ledentsov,et al.  Spontaneous ordering of arrays of coherent strained islands. , 1995, Physical review letters.

[96]  Subhananda Chakrabarti,et al.  High responsivity AlAs/InAs/GaAs superlattice quantum dot infrared photodetector , 2004 .

[97]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[98]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[99]  David T. D. Childs,et al.  SCANNING TRANSMISSION-ELECTRON MICROSCOPY STUDY OF INAS/GAAS QUANTUM DOTS , 1998 .

[100]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[101]  Friedhelm Hopfer,et al.  Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth , 2006 .

[102]  Yasuhiko Arakawa,et al.  Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition , 2001 .

[103]  Nikolai N. Ledentsov,et al.  Excited states in self‐organized InAs/GaAs quantum dots: Theory and experiment , 1996 .

[104]  Qin Han,et al.  High-power and long-lifetime InAs/GaAs quantum-dot laser at 1080 nm , 2001 .

[105]  M. Rosen,et al.  Breaking the phonon bottleneck in nanometer quantum dots: Role of Auger-like processes , 1995 .

[106]  A. Kiraz,et al.  Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing , 2003, quant-ph/0308117.

[107]  Dieter Bimberg,et al.  Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition , 1997 .

[108]  Hongtao Jiang,et al.  Self-assembled semiconductor structures: electronic and optoelectronic properties , 1998 .

[109]  Mariangela Gioannini Investigation of p-type doping effect on the gain characteristics of quantum dash semiconductor lasers , 2004, SPIE Photonics Europe.

[110]  S. Chakrabarti,et al.  Electrically injected quantum-dot photonic crystal microcavity light sources. , 2006, Optics letters.

[111]  Jagadeesh Pamulapati,et al.  Realization of in-situ sub two-dimensional quantum structures by strained layer growth phenomena in the InxGa1- xAs/GaAs system , 1996 .

[112]  Hiroshi Ishikawa,et al.  Temperature dependent lasing characteristics of multi-stacked quantum dot lasers , 1997 .

[113]  Sasan Fathpour,et al.  Measurement of modal gain in 1.1 μm p-doped tunnel injection InGaAs/GaAs quantum dot laser heterostructures , 2005 .

[114]  Diana L. Huffaker,et al.  Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture , 1997 .

[115]  Joe C. Campbell,et al.  High detectivity InAs quantum dot infrared photodetectors , 2004 .

[116]  Jasprit Singh,et al.  Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study , 1997 .

[117]  T. Jones,et al.  Strain-engineered InAs'GaAs quantum dots for long-wavelength emission , 2003 .

[118]  Nikolai N. Ledentsov,et al.  3.9 W CW power from sub-monolayer quantum dot diode laser , 1999 .

[119]  Werner Schrenk,et al.  Electroluminescence of a quantum dot cascade structure , 2003 .

[120]  Meimei Z. Tidrow,et al.  Demonstration of a 256×256 middle-wavelength infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors , 2004 .

[121]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[122]  Johann Peter Reithmaier,et al.  Lasing in high-Q quantum-dot micropillar cavities , 2006 .

[123]  Mikhail V. Maximov,et al.  Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors , 2000 .

[124]  Nikolai N. Ledentsov,et al.  Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , 1997 .

[125]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[126]  Sanjay Krishna,et al.  Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors , 2005 .

[127]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[128]  Jasprit Singh,et al.  Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers , 2003 .

[129]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[130]  Nikolai N. Ledentsov,et al.  Interconnection between gain spectrum and cavity mode in a quantum-dot vertical-cavity laser , 1999 .

[131]  P. K. Kondratko,et al.  Observations of near-zero linewidth enhancement factor in a quantum-well coupled quantum-dot laser , 2003 .

[132]  Sanjay Krishna,et al.  Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors , 2003 .

[133]  John E. Bowers,et al.  Time‐resolved optical characterization of InGaAs/GaAs quantum dots , 1994 .

[134]  Mitsuru Sugawara,et al.  Artificial control of optical gain polarization by stacking quantum dot layers , 2006 .

[135]  Sanjay Krishna,et al.  Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector , 2001 .

[136]  Luke F. Lester,et al.  Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers , 2001 .

[137]  Peter Michler,et al.  Correlated photon pairs from single (in, ga)as/gaas quantum dots in pillar microcavities , 2005 .

[138]  Jukka Tulkki,et al.  Temperature dependence of carrier relaxation in strain-induced quantum dots , 1998 .

[139]  Subhananda Chakrabarti,et al.  Quantum dot infrared photodetector design based on double-barrier resonant tunnelling , 2004 .

[140]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[141]  M. Lipinski,et al.  Strain-induced material intermixing of InAs quantum dots in GaAs , 2000 .

[142]  Anupam Madhukar,et al.  Independent manipulation of density and size of stress-driven self-assembled quantum dots , 1998 .

[143]  Jasprit Singh,et al.  Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots , 2000 .

[144]  Zetian Mi,et al.  Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 μm metamorphic InAs quantum dot lasers on GaAs , 2007 .

[145]  Nikolai N. Ledentsov,et al.  1.3 μm InAs/GaAs quantum dot lasers and VCSELs grown by molecular beam epitaxy , 2001 .

[146]  Nobuhiko P. Kobayashi,et al.  In situ, atomic force microscope studies of the evolution of InAs three‐dimensional islands on GaAs(001) , 1996 .

[147]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[148]  P. P. González-Borrero,et al.  Exciton localization and temperature stability in self‐organized InAs quantum dots , 1996 .