The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study.

[1]  P. Strick,et al.  Basal ganglia and cerebellar loops: motor and cognitive circuits , 2000, Brain Research Reviews.

[2]  R. Kawashima,et al.  Human cerebellum plays an important role in memory-timed finger movement: an fMRI study. , 2000, Journal of neurophysiology.

[3]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[4]  P. Strick,et al.  The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1 , 1999, The Journal of Neuroscience.

[5]  Alan C. Evans,et al.  Cerebellar Contributions to Motor Timing: A PET Study of Auditory and Visual Rhythm Reproduction , 1998, Journal of Cognitive Neuroscience.

[6]  S. Petersen,et al.  Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. , 1998, Journal of neurophysiology.

[7]  Seong-Gi Kim,et al.  Effects of movement predictability on cortical motor activation , 1998, Neuroscience Research.

[8]  M. Denis,et al.  Reopening the Mental Imagery Debate: Lessons from Functional Anatomy , 1998, NeuroImage.

[9]  Karl J. Friston,et al.  Characterizing Stimulus–Response Functions Using Nonlinear Regressors in Parametric fMRI Experiments , 1998, NeuroImage.

[10]  M. Jüptner,et al.  A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. , 1998, Brain : a journal of neurology.

[11]  M. Himmelbach,et al.  A parametric analysis of the `rate effect' in the sensorimotor cortex: a functional magnetic resonance imaging analysis in human subjects , 1998, Neuroscience Letters.

[12]  A. Gordon,et al.  Functional magnetic resonance imaging of motor, sensory, and posterior parietal cortical areas during performance of sequential typing movements , 1998, Experimental Brain Research.

[13]  G Rizzolatti,et al.  Parcellation of human mesial area 6: cytoarchitectonic evidence for three separate areas , 1998, The European journal of neuroscience.

[14]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[15]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[16]  J. Desmond,et al.  Dissociation of Frontal and Cerebellar Activity in a Cognitive Task: Evidence for a Distinction between Selection and Search , 1998, NeuroImage.

[17]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[18]  M. Hallett,et al.  The functional neuroanatomy of simple and complex sequential finger movements: a PET study. , 1998, Brain : a journal of neurology.

[19]  Karl J. Friston,et al.  Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. , 1998, Journal of neurophysiology.

[20]  S. Kosslyn,et al.  Neural Systems Shared by Visual Imagery and Visual Perception: A Positron Emission Tomography Study , 1997, NeuroImage.

[21]  R. Passingham,et al.  The effect of movement frequency on cerebral activation: a positron emission tomography study , 1997, Journal of the Neurological Sciences.

[22]  Guy Marchal,et al.  FMRI Studies of the Supplementary Motor Area and the Premotor Cortex , 1997, NeuroImage.

[23]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[24]  J. Binder,et al.  Distributed Neural Systems Underlying the Timing of Movements , 1997, The Journal of Neuroscience.

[25]  M. Hallett,et al.  Frequency-Dependent Changes of Regional Cerebral Blood Flow during Finger Movements: Functional MRI Compared to PET , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  M. Farah,et al.  A functional MRI study of mental image generation , 1997, Neuropsychologia.

[27]  Richard S. J. Frackowiak,et al.  Anatomy of motor learning. II. Subcortical structures and learning by trial and error. , 1997, Journal of neurophysiology.

[28]  Scott T. Grafton,et al.  Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. , 1997, Journal of neurophysiology.

[29]  Karl J. Friston,et al.  Quantitative Comparison of Functional Magnetic Resonance Imaging with Positron Emission Tomography Using a Force-Related Paradigm , 1996, NeuroImage.

[30]  Scott T. Grafton,et al.  Localization of grasp representations in humans by positron emission tomography , 1996, Experimental Brain Research.

[31]  P A Bandettini,et al.  Relationship between Finger Movement Rate and Functional Magnetic Resonance Signal Change in Human Primary Motor Cortex , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  Karl J. Friston,et al.  Nonlinear Regression in Parametric Activation Studies , 1996, NeuroImage.

[33]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[34]  J. Bower,et al.  Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control , 1996, Science.

[35]  M. Hallett,et al.  Complexity affects regional cerebral blood flow change during sequential finger movements , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  G. Schlaug,et al.  Cerebral activation covaries with movement rate , 1996, Neuroreport.

[37]  Mark S. Cohen,et al.  Changes in cortical activity during mental rotation. A mapping study using functional MRI. , 1996, Brain : a journal of neurology.

[38]  M. Jüptner,et al.  Localization of a cerebellar timing process using PET , 1995, Neurology.

[39]  M. Jüptner,et al.  Review: Does Measurement of Regional Cerebral Blood Flow Reflect Synaptic Activity?—Implications for PET and fMRI , 1995, NeuroImage.

[40]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[41]  D. Brooks The role of the basal ganglia in motor control: contributions from PET , 1995, Journal of the Neurological Sciences.

[42]  P. Strick,et al.  Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. , 1994, Science.

[43]  J. Mazziotta,et al.  Mapping motor representations with positron emission tomography , 1994, Nature.

[44]  P. Strick,et al.  Activation of a cerebellar output nucleus during cognitive processing. , 1994, Science.

[45]  D. Brooks,et al.  Motor sequence learning: a study with positron emission tomography , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[47]  J. Binder,et al.  Functional magnetic resonance imaging of complex human movements , 1993, Neurology.

[48]  J. Tanji,et al.  The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. , 1993, Brain : a journal of neurology.

[49]  Karl J. Friston,et al.  Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Scott T. Grafton,et al.  Human functional anatomy of visually guided finger movements. , 1992, Brain : a journal of neurology.

[52]  R. Seitz,et al.  Learning of Sequential Finger Movements in Man: A Combined Kinematic and Positron Emission Tomography (PET) Study , 1992, The European journal of neuroscience.

[53]  M. Inase,et al.  Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. , 1991, Journal of neurophysiology.

[54]  Karl J. Friston,et al.  Cortical areas and the selection of movement: a study with positron emission tomography , 1991, Experimental Brain Research.

[55]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[56]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[57]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[58]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[59]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[60]  S. Wise,et al.  Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks , 2004, Experimental Brain Research.

[61]  J. Tanji,et al.  Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement , 2004, Experimental Brain Research.

[62]  G. Schlaug,et al.  Inter-subject variability of cerebral activations in acquiring a motor skill: a study with positron emission tomography , 2004, Experimental Brain Research.

[63]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[64]  Stephen M. Rao,et al.  Specialized Neural Systems Underlying Representations of Sequential Movements , 2000, Journal of Cognitive Neuroscience.

[65]  Karl J. Friston Analysing brain images: principles and overview , 1997 .

[66]  P. Skudlarski,et al.  An fMRI study of the human cortical motor system response to increasing functional demands. , 1997, Magnetic resonance imaging.

[67]  H. Lüders Supplementary sensorimotor area , 1996 .

[68]  R. Passingham,et al.  Functional anatomy of the mental representation of upper extremity movements in healthy subjects. , 1995, Journal of neurophysiology.

[69]  Robert S. Dow,et al.  The underestimated cerebellum , 1994 .

[70]  S. Petersen,et al.  Practice-related changes in human brain functional anatomy during nonmotor learning. , 1994, Cerebral cortex.

[71]  L Rispal-Padel,et al.  [Contribution of cerebellar efferents to the organization of motor synergy]. , 1993, Revue neurologique.

[72]  R. Passingham Two cortical systems for directing movement. , 1987, Ciba Foundation symposium.