MYO10-filopodia support basement membranes at pre-invasive tumor boundaries.

[1]  Romain F. Laine,et al.  TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines , 2022, Nature Methods.

[2]  Romain F. Laine,et al.  Avoiding a replication crisis in deep-learning-based bioimage analysis , 2021, Nature Methods.

[3]  Romain F. Laine,et al.  Democratising deep learning for microscopy with ZeroCostDL4Mic , 2021, Nature Communications.

[4]  J. van Rheenen,et al.  An Intravital Microscopy Toolbox to Study Mammary Gland Dynamics from Cellular Level to Organ Scale , 2021, Journal of Mammary Gland Biology and Neoplasia.

[5]  S. Egan,et al.  The tumor cell‐derived matrix of lobular breast cancer: a new vulnerability , 2021, EMBO molecular medicine.

[6]  P. Bucher,et al.  Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and LOXL1 , 2021, EMBO molecular medicine.

[7]  J. Goedhart SuperPlotsOfData—a web app for the transparent display and quantitative comparison of continuous data from different conditions , 2021, Molecular biology of the cell.

[8]  Tyler T. Risom,et al.  Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma , 2021, Cell.

[9]  Tanmay Kulkarni,et al.  Myosin 10 Regulates Invasion, Mitosis, and Metabolic Signaling in Glioblastoma , 2020, iScience.

[10]  Romain F. Laine,et al.  Automated cell tracking using StarDist and TrackMate , 2020, bioRxiv.

[11]  Travis A. Meyer,et al.  Live-cell super-resolved PAINT imaging of piconewton cellular traction forces , 2020, Nature Methods.

[12]  Florian Jug,et al.  Improving Blind Spot Denoising for Microscopy , 2020, ECCV Workshops.

[13]  J. Konen,et al.  Epigenetically heterogeneous tumor cells direct collective invasion through filopodia-driven fibronectin micropatterning , 2020, Science Advances.

[14]  Y. Matsubayashi,et al.  Rapid Homeostatic Turnover of Embryonic ECM during Tissue Morphogenesis , 2020, Developmental cell.

[15]  D. Sherwood,et al.  Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. , 2020, Developmental cell.

[16]  Joachim Goedhart,et al.  VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots , 2020, Scientific Reports.

[17]  H. Vihinen,et al.  Myosin-X and talin modulate integrin activity at filopodia tips , 2020, bioRxiv.

[18]  V. Weaver,et al.  The fibrotic tumor stroma. , 2020, Biochimica et biophysica acta. Reviews on cancer.

[19]  F. Perez,et al.  Localized Intercellular Transfer of Ephrin-As by Trans-endocytosis Enables Long-Term Signaling. , 2019, Developmental cell.

[20]  Samuel J. Lord,et al.  If your P value looks too good to be true, it probably is: Communicating reproducibility and variability in cell biology , 2019, 1911.03509.

[21]  A. Cambi,et al.  MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion , 2019, Nature Communications.

[22]  Ricardo Henriques,et al.  Fluctuation-Based Super-Resolution Traction Force Microscopy , 2019, bioRxiv.

[23]  Johannes Textor,et al.  CelltrackR: An R package for fast and flexible analysis of immune cell migration data , 2019, bioRxiv.

[24]  Kenneth M. Yamada,et al.  Basement membrane regulates fibronectin organization using sliding focal adhesions driven by a contractile winch , 2019, bioRxiv.

[25]  Roger D Kamm,et al.  Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices , 2019, PLoS Comput. Biol..

[26]  J. Goedhart PlotsOfDifferences – a web app for the quantitative comparison of unpaired data , 2019, bioRxiv.

[27]  Marten Postma,et al.  PlotsOfData—A web app for visualizing data together with their summaries , 2019, PLoS biology.

[28]  Lars J. Grimm,et al.  Cancer Outcomes in DCIS Patients Without Locoregional Treatment. , 2019, Journal of the National Cancer Institute.

[29]  A. Gavin,et al.  Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. , 2018, European journal of cancer.

[30]  D. Adams,et al.  XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data , 2018, BMC Bioinformatics.

[31]  Guillaume Jacquemet,et al.  Filopodome Mapping Identifies p130Cas as a Mechanosensitive Regulator of Filopodia Stability , 2018, Current Biology.

[32]  L. M. Coluccio,et al.  Myosin X is required for efficient melanoblast migration and melanoma initiation and metastasis , 2018, Scientific Reports.

[33]  Eugene W. Myers,et al.  Cell Detection with Star-convex Polygons , 2018, MICCAI.

[34]  D. Loew,et al.  Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane , 2017, Nature Communications.

[35]  Ilkka Paatero,et al.  FiloQuant reveals increased filopodia density during breast cancer progression , 2017, The Journal of cell biology.

[36]  J. Condeelis,et al.  Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. , 2017, Trends in cell biology.

[37]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[38]  R. Hynes,et al.  Characterization of the Extracellular Matrix of Normal and Diseased Tissues Using Proteomics. , 2017, Journal of proteome research.

[39]  Ranjay Jayadev,et al.  Basement membranes , 2017, Current Biology.

[40]  Johannes Schindelin,et al.  TrackMate: An open and extensible platform for single-particle tracking. , 2017, Methods.

[41]  R. Lansford,et al.  Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap , 2017, Development.

[42]  P. Kronqvist,et al.  L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling , 2016, Nature Communications.

[43]  A. Vincent-Salomon,et al.  p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer , 2016, Oncogene.

[44]  Andrew G. Clark,et al.  Modes of cancer cell invasion and the role of the microenvironment. , 2015, Current opinion in cell biology.

[45]  Stefan W. Hell,et al.  SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy , 2015, Nature Communications.

[46]  Guillaume Jacquemet,et al.  Filopodia in cell adhesion, 3D migration and cancer cell invasion. , 2015, Current opinion in cell biology.

[47]  S. Carr,et al.  The extracellular matrix: Tools and insights for the "omics" era. , 2015, Matrix biology : journal of the International Society for Matrix Biology.

[48]  Martin A. Nowak,et al.  A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity , 2015, Nature.

[49]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[50]  L. Oddershede,et al.  Helical buckling of actin inside filopodia generates traction , 2014, Proceedings of the National Academy of Sciences.

[51]  Maarten Merkx,et al.  Colorful Protein-Based Fluorescent Probes for Collagen Imaging , 2014, PloS one.

[52]  L. Zhang,et al.  Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis , 2014, British Journal of Cancer.

[53]  S. Carr,et al.  Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters , 2014, eLife.

[54]  P. Taimen,et al.  Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. , 2014, The Journal of clinical investigation.

[55]  P. Paul-Gilloteaux,et al.  Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia , 2013, The Journal of cell biology.

[56]  J. C. Fierro-González,et al.  Cadherin-dependent filopodia control preimplantation embryo compaction , 2013, Nature Cell Biology.

[57]  Patricia Bassereau,et al.  Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip , 2013, Proceedings of the National Academy of Sciences.

[58]  R. Weinberg,et al.  An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. , 2013, Cancer cell.

[59]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[60]  V. Vogel,et al.  The role of filopodia in the recognition of nanotopographies , 2013, Scientific Reports.

[61]  S. Muthuswamy,et al.  Rotational motion during three-dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly , 2012, Proceedings of the National Academy of Sciences.

[62]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[63]  R. Weinberg,et al.  The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. , 2012, Cancer discovery.

[64]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[65]  Steven A. Carr,et al.  The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices , 2011, Molecular & Cellular Proteomics.

[66]  J. Schwarzbauer,et al.  Assembly of fibronectin extracellular matrix. , 2010, Annual review of cell and developmental biology.

[67]  F. Kittrell,et al.  An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ , 2009, Breast Cancer Research.

[68]  P. Yurchenco,et al.  Developmental and pathogenic mechanisms of basement membrane assembly. , 2009, Current pharmaceutical design.

[69]  V. Torre,et al.  Properties of the Force Exerted by Filopodia and Lamellipodia and the Involvement of Cytoskeletal Components , 2007, PloS one.

[70]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[71]  J. Berg,et al.  Myosin-X is an unconventional myosin that undergoes intrafilopodial motility , 2002, Nature Cell Biology.

[72]  F. Miller,et al.  MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. , 2000, Journal of the National Cancer Institute.

[73]  P. Rosen,et al.  Intraductal carcinoma. Long-term follow-up after treatment by biopsy alone. , 1978 .

[74]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[75]  Patricia J Keely,et al.  Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. , 2011, Cold Spring Harbor perspectives in biology.

[76]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[77]  F. Miller,et al.  MCF10AT: a model for the evolution of cancer from proliferative breast disease. , 1996, The American journal of pathology.