Neutral and Anionic Gold Decamers: Planar Structure with Unusual Spatial Charge-Spin Separation.

We have investigated the issue of two-dimensional (2D) versus three-dimensional (3D) structures for neutral-state Au10 and clarified the lowest-energy structure among a few 2D Au10(-) isomers. Though almost all previous works were based on density functional theory (DFT), we here carried out not only extensive DFT calculations but also high levels of ab initio calculations of Möller-Plesset second order perturbation theory (MP2), and coupled cluster theory with single and double excitations (CCSD) including perturbative triple excitations [CCSD(T)]. While DFT favors 2D structures, MP2 and CCSD(T) favor 3D structures for moderate-sized basis sets. However, we note that the basis-set superposition error (BSSE) corrections make the ab intio results favor 2D structures too. The near-degeneracy (driven by relativistic effects) of 5d and 6s orbitals of gold helps stabilize acute apex gold atoms, resulting in 2D structures. The planar triangular structures of a local minimum Au10 (triplet) and the global minimum Au10(-) show remarkable spatial charge-spin separation due to their singly occupied molecular orbital(s). By the same reason, Au10(-) shows much larger vertical detachment energy than other even-numbered gold cluster anions.

[1]  P. Pyykkö Structural properties: magic nanoclusters of gold. , 2007, Nature nanotechnology.

[2]  Kwang Soo Kim,et al.  Ab initio study of the low-lying electronic states of Ag 3 ,A g 3 , and Ag 3 : A coupled-cluster approach , 2000 .

[3]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[4]  Jaroslav V. Burda,et al.  Density functional study of structural and electronic properties of bimetallic silver–gold clusters: Comparison with pure gold and silver clusters , 2002 .

[5]  W. C. Ermler,et al.  Ab initio effective core potentials including relativistic effects. IV. Potential energy curves for the ground and several excited states of Au2 , 1979 .

[6]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[7]  S. Bulusu,et al.  Structural Transitions from Pyramidal to Fused Planar to Tubular to Core/Shell Compact in Gold Clusters: Aun- (n = 21−25) , 2007 .

[8]  P. Schwerdtfeger Gold goes nano--from small clusters to low-dimensional assemblies. , 2003, Angewandte Chemie.

[9]  H. Schwarz,et al.  Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. , 2005, Angewandte Chemie.

[10]  Kwang S. Kim,et al.  Linear monatomic wires stabilized by alloying:Ab initiodensity functional calculations , 2003 .

[11]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[12]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[13]  G. Bishea,et al.  Spectroscopic studies of jet‐cooled AgAu and Au2 , 1991 .

[14]  Christoph R. Jacob,et al.  The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations , 2002 .

[15]  D. Ugarte,et al.  Signature of atomic structure in the quantum conductance of gold nanowires. , 2000, Physical review letters.

[16]  Dongwook Kim,et al.  Complete basis set limit of Ab initio binding energies and geometrical parameters for various typical types of complexes , 2008, J. Comput. Chem..

[17]  P. Pyykkö,et al.  Aurophilic attraction in binuclear complexes with Au(I) and Au(III). A theoretical study , 2004 .

[18]  U. Landman,et al.  Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. , 2003, Angewandte Chemie.

[19]  Kwang S. Kim,et al.  Magic structures and quantum conductance of [110] silver nanowires , 2006 .

[20]  Kwang Soo Kim,et al.  Prediction of very large values of magnetoresistance in a graphene nanoribbon device. , 2008, Nature nanotechnology.

[21]  Maofa Ge,et al.  Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation , 2003 .

[22]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[23]  P. Weis Structure determination of gaseous metal and semi-metal cluster ions by ion mobility spectrometry , 2005 .

[24]  Gold Nanowires and Their Chemical Modifications , 1999, cond-mat/9909405.

[25]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[26]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[27]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[28]  P. Schwerdtfeger,et al.  Relativistic coupled cluster calculations for neutral and singly charged Au3 clusters , 2000 .

[29]  N. Runeberg,et al.  Icosahedral WAu12: A Predicted Closed‐Shell Species, Stabilized by Aurophilic Attraction and Relativity and in Accord with the 18‐Electron Rule , 2002 .

[30]  S. Youn,et al.  Effect of dimensionality on the electronic structure of Cu, Ag, and Au , 2003 .

[31]  W. Delgass,et al.  Density functional theory investigation of gold cluster geometry and gas-phase reactivity with O2 , 2002 .

[32]  Young Cheol Choi,et al.  Understanding Clusters toward the Design of Functional Molecules and Nanomaterials , 2007 .

[33]  Evert Jan Baerends,et al.  Relativistic effects on bonding , 1981 .

[34]  M. Kappes,et al.  Electronic photodissociation spectroscopy of Aun- x Xe (n = 7-11) versus time-dependent density functional theory prediction. , 2004, The Journal of chemical physics.

[35]  J. Taylor,et al.  Calculation of the intensities of the vibrational components of the ammonia ultra-violet absorption bands , 1970 .

[36]  S. Pennycook,et al.  s-Electron ferromagnetism in gold and silver nanoclusters. , 2007, Nano letters.

[37]  M. Ford,et al.  Low energy structures of gold nanoclusters in the size range 3–38 atoms , 2004 .

[38]  A. D. McLean,et al.  AB INITIO EFFECTIVE CORE POTENTIALS INCLUDING RELATIVISTIC EFFECTS. III. GROUND STATE AU2 CALCULATIONS , 1979 .

[39]  Hannu Häkkinen,et al.  On the Electronic and Atomic Structures of Small AuN- (N = 4−14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study , 2003 .

[40]  P. Pyykkö,et al.  Ab initio Calculations on the (ClAuPH3)2 Dimer with Relativistic Pseudopotential: Is the “Aurophilic Attraction” a Correlation Effect? , 1991 .

[41]  Jan M.L. Martin,et al.  Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe , 2001 .

[42]  Han Myoung Lee,et al.  Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer , 2000 .

[43]  F. Remacle,et al.  Structure and energetics of two- and three-dimensional neutral, cationic, and anionic gold clusters Au5⩽n⩽9Z (Z=0,±1) , 2005 .

[44]  U. Landman,et al.  Bonding trends and dimensionality crossover of gold nanoclusters on metal-supported MgO thin films. , 2006, Physical review letters.

[45]  Peter Schwerdtfeger,et al.  Relativistic effects in gold chemistry. I. Diatomic gold compounds , 1989 .

[46]  M. Musiał,et al.  Where does the planar-to-nonplanar turnover occur in small gold clusters? , 2005, Journal of the American Chemical Society.

[47]  Uzi Landman,et al.  Gold clusters(AuN,2<~N<~10)and their anions , 2000 .

[48]  Xiao Cheng Zeng,et al.  Evidence of hollow golden cages. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  K. Gingerich,et al.  Atomization Enthalpies of the Molecules Cu3, Ag3, and Au3 , 1980 .

[50]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[51]  P. Pyykkö,et al.  Relativistic pseudo-potential analysis of the weak Au(I)...Au(I) attraction , 1992 .

[52]  Jun Li,et al.  Experimental and theoretical investigation of the electronic and geometrical structures of the Au32 cluster. , 2005, Angewandte Chemie.

[53]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[54]  Uzi Landman,et al.  Cluster-derived structures and conductance fluctuations in nanowires , 1997, Nature.

[55]  Jijun Zhao,et al.  Density-functional study of Au n ( n = 2 – 2 0 ) clusters: Lowest-energy structures and electronic properties , 2002 .

[56]  A. Walker Structure and energetics of small gold nanoclusters and their positive ions. , 2005, The Journal of chemical physics.

[57]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[58]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[59]  P. Pyykkö Relativity, gold, closed-shell interactions, and CsAu.NH3. , 2002, Angewandte Chemie.

[60]  Sang Joo Lee,et al.  An Easy-to-Use Three-Dimensional Molecular Visualization and Analysis Program: POSMOL , 2004 .

[61]  Jaehoon Jung,et al.  Structure and stability of the Al14 halides Al14In - (n=1-11): can we regard the Al14 core as an alkaline earthlike superatom? , 2006, The Journal of chemical physics.

[62]  H. Grönbeck,et al.  Comparison of the bonding in Au8 and Cu8 : A density functional theory study , 2005 .

[63]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on Au2 in the framework of the Douglas–Kroll transformation , 2000 .

[64]  Han Myoung Lee,et al.  How can we make stable linear monoatomic chains? Gold-cesium binary subnanowires as an example of a charge-transfer-driven approach to alloying. , 2007, Physical review letters.

[65]  J. G. Snijders,et al.  On the origin of relativistic bond contraction , 1980 .

[66]  Kwang S. Kim,et al.  Spatial structure of Au8: Importance of basis set completeness and geometry relaxation. , 2006, The journal of physical chemistry. B.

[67]  W. Schulze,et al.  Electronic Structures and Related Properties. Electron Impact Ionization Potentials of Gold and Silver Clusters Men, n ≤ 22 , 1992 .

[68]  Kwang S. Kim,et al.  Nanowires for spintronics: A study of transition-metal elements of groups 8–10 , 2004 .

[69]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[70]  Varlei Rodrigues,et al.  Evidence for spontaneous spin-polarized transport in magnetic nanowires. , 2003, Physical review letters.

[71]  R. Nieminen,et al.  Electron transport through monovalent atomic wires , 2004 .

[72]  H. Häkkinen,et al.  Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. , 2008, Chemical Society reviews.

[73]  Charles W. Bauschlicher,et al.  Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au) , 1989 .

[74]  B. Simard,et al.  High resolution study of the (0, 0) and (1, 1) bands of the A0u+-X0g+ system of Au2 , 1990 .

[75]  Young Cheol Choi,et al.  Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices , 2008 .

[76]  H. Lee,et al.  Spin-orbit effects calculated by two-component coupled-cluster methods: test calculations on AuH, Au2, TlH and Tl2 , 1998 .