Curvature and transport inequalities for Markov chains in discrete spaces

We study various transport-information inequalities under three different notions of Ricci curvature in the discrete setting: the curvature-dimension condition of Bakry and \'Emery, the exponential curvature-dimension condition of Bauer \textit{et al.} and the coarse Ricci curvature of Ollivier. We prove that under a curvature-dimension condition or coarse Ricci curvature condition, an $L_1$ transport-information inequality holds; while under an exponential curvature-dimension condition, some weak-transport information inequalities hold. As an application, we establish a Bonnet-Meyer's theorem under the curvature-dimension condition CD$(\kappa,\infty)$ of Bakry and \'Emery.

[1]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[2]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[3]  S. Bobkov,et al.  Modified Logarithmic Sobolev Inequalities in Discrete Settings , 2006 .

[4]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .

[5]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[6]  C. Villani Topics in Optimal Transportation , 2003 .

[7]  Paul-Marie Samson,et al.  Kantorovich duality for general transport costs and applications , 2014, 1412.7480.

[8]  Transportation-information inequalities for Markov processes (II) : relations with other functional inequalities , 2009, 0902.2101.

[9]  James R. Lee,et al.  Transport-Entropy Inequalities and Curvature in Discrete-Space Markov Chains , 2016, 1604.06859.

[10]  Y. Ollivier A survey of Ricci curvature for metric spaces and Markov chains , 2010 .

[11]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[12]  Shiping Liu,et al.  Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..

[13]  Arnaud Guillin,et al.  Transportation-information inequalities for Markov processes , 2007, 0706.4193.

[14]  Karl-Theodor Sturm,et al.  Mass transportation and rough curvature bounds for discrete spaces , 2009 .

[15]  S. Yau,et al.  Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs , 2014, 1411.5087.

[16]  Oliver Johnson A discrete log-Sobolev inequality under a Bakry-Emery type condition , 2015, ArXiv.

[17]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[18]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[19]  Shing-Tung Yau,et al.  Li-Yau inequality on graphs , 2013, 1306.2561.

[20]  Paul-Marie Samson,et al.  Displacement convexity of entropy and related inequalities on graphs , 2012, Probability Theory and Related Fields.

[21]  M. Ledoux The concentration of measure phenomenon , 2001 .

[22]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[23]  Ald'eric Joulin Poisson-type deviation inequalities for curved continuous-time Markov chains , 2007 .

[24]  Christian L'eonard On the convexity of the entropy along entropic interpolations , 2013, 1310.1274.

[25]  M. Schmuckenschläger Curvature of Nonlocal Markov Generators , 1998 .

[26]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[27]  M. Luczak Concentration of measure and mixing for Markov chains , 2008, 0809.4856.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  L. Ambrosio,et al.  Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds , 2012, 1209.5786.

[30]  Measure concentration through non-Lipschitz observables and functional inequalities , 2012, 1202.2341.

[31]  Y. Shu Hamilton-Jacobi Equations on Graph and Applications , 2015, Potential Analysis.

[32]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[33]  S. Yau,et al.  Ricci curvature and eigenvalue estimate on locally finite graphs , 2010 .

[34]  N. Gozlan A characterization of dimension free concentration in terms of transportation inequalities , 2008, 0804.3089.

[35]  F. Chung,et al.  Harnack inequalities for graphs with non-negative Ricci curvature , 2012, 1207.6612.

[36]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[37]  A. Mielke Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .

[38]  P. Tetali,et al.  Discrete Curvature and Abelian Groups , 2015, Canadian Journal of Mathematics.

[39]  Y. Ollivier,et al.  CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.

[40]  R. Oliveira On the convergence to equilibrium of Kac’s random walk on matrices , 2007, 0705.2253.

[41]  J. Maas,et al.  Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.

[42]  M. Sammer ASPECTS OF MASS TRANSPORTATION IN DISCRETE CONCENTRATION INEQUALITIES , 2005 .

[43]  Florentin Münch Remarks on curvature dimension conditions on graphs , 2015 .

[44]  C. Villani Optimal Transport: Old and New , 2008 .

[45]  Cyril Roberto,et al.  Hamilton Jacobi equations on metric spaces and transport-entropy inequalities , 2012, 1203.2783.