Curvature and transport inequalities for Markov chains in discrete spaces
暂无分享,去创建一个
[1] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[2] Y. Ollivier. Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.
[3] S. Bobkov,et al. Modified Logarithmic Sobolev Inequalities in Discrete Settings , 2006 .
[4] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .
[5] J. Maas. Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.
[6] C. Villani. Topics in Optimal Transportation , 2003 .
[7] Paul-Marie Samson,et al. Kantorovich duality for general transport costs and applications , 2014, 1412.7480.
[8] Transportation-information inequalities for Markov processes (II) : relations with other functional inequalities , 2009, 0902.2101.
[9] James R. Lee,et al. Transport-Entropy Inequalities and Curvature in Discrete-Space Markov Chains , 2016, 1604.06859.
[10] Y. Ollivier. A survey of Ricci curvature for metric spaces and Markov chains , 2010 .
[11] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[12] Shiping Liu,et al. Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..
[13] Arnaud Guillin,et al. Transportation-information inequalities for Markov processes , 2007, 0706.4193.
[14] Karl-Theodor Sturm,et al. Mass transportation and rough curvature bounds for discrete spaces , 2009 .
[15] S. Yau,et al. Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs , 2014, 1411.5087.
[16] Oliver Johnson. A discrete log-Sobolev inequality under a Bakry-Emery type condition , 2015, ArXiv.
[17] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[18] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[19] Shing-Tung Yau,et al. Li-Yau inequality on graphs , 2013, 1306.2561.
[20] Paul-Marie Samson,et al. Displacement convexity of entropy and related inequalities on graphs , 2012, Probability Theory and Related Fields.
[21] M. Ledoux. The concentration of measure phenomenon , 2001 .
[22] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[23] Ald'eric Joulin. Poisson-type deviation inequalities for curved continuous-time Markov chains , 2007 .
[24] Christian L'eonard. On the convexity of the entropy along entropic interpolations , 2013, 1310.1274.
[25] M. Schmuckenschläger. Curvature of Nonlocal Markov Generators , 1998 .
[26] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[27] M. Luczak. Concentration of measure and mixing for Markov chains , 2008, 0809.4856.
[28] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[29] L. Ambrosio,et al. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds , 2012, 1209.5786.
[30] Measure concentration through non-Lipschitz observables and functional inequalities , 2012, 1202.2341.
[31] Y. Shu. Hamilton-Jacobi Equations on Graph and Applications , 2015, Potential Analysis.
[32] Djalil CHAFAÏ,et al. Sur les in'egalit'es de Sobolev logarithmiques , 2000 .
[33] S. Yau,et al. Ricci curvature and eigenvalue estimate on locally finite graphs , 2010 .
[34] N. Gozlan. A characterization of dimension free concentration in terms of transportation inequalities , 2008, 0804.3089.
[35] F. Chung,et al. Harnack inequalities for graphs with non-negative Ricci curvature , 2012, 1207.6612.
[36] Martin E. Dyer,et al. Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[37] A. Mielke. Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .
[38] P. Tetali,et al. Discrete Curvature and Abelian Groups , 2015, Canadian Journal of Mathematics.
[39] Y. Ollivier,et al. CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.
[40] R. Oliveira. On the convergence to equilibrium of Kac’s random walk on matrices , 2007, 0705.2253.
[41] J. Maas,et al. Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.
[42] M. Sammer. ASPECTS OF MASS TRANSPORTATION IN DISCRETE CONCENTRATION INEQUALITIES , 2005 .
[43] Florentin Münch. Remarks on curvature dimension conditions on graphs , 2015 .
[44] C. Villani. Optimal Transport: Old and New , 2008 .
[45] Cyril Roberto,et al. Hamilton Jacobi equations on metric spaces and transport-entropy inequalities , 2012, 1203.2783.