Connecting the chemical and physical viewpoints of what determines structure: from 1-D chains to γ-brasses.

Connecting the Chemical and Physical Viewpoints of What Determines Structure: From 1-D Chains to γ-Brasses Robert F. Berger, Peter L. Walters, Stephen Lee,* and Roald Hoffmann* Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States

[1]  R. Hoffmann,et al.  Double-diamond NaAl via pressure: understanding structure through Jones zone activation. , 2010, The Journal of chemical physics.

[2]  V. Blatov,et al.  Nanocluster model of intermetallic compounds with giant unit cells: beta, beta'-Mg(2)Al(3) polymorphs. , 2010, Inorganic chemistry.

[3]  V. Blatov,et al.  Intermetallic compounds of the NaCd2 family perceived as assemblies of nanoclusters , 2009 .

[4]  B. Harbrecht,et al.  Large, larger, largest--a family of cluster-based tantalum copper aluminides with giant unit cells. I. Structure solution and refinement. , 2009, Acta crystallographica. Section B, Structural science.

[5]  B. Harbrecht,et al.  Large, larger, largest--a family of cluster-based tantalum copper aluminides with giant unit cells. II. The cluster structure. , 2009, Acta crystallographica. Section B, Structural science.

[6]  V. Blatov,et al.  Structural chemistry of metal microclusters: Questions and answers , 2009 .

[7]  B. Nebgen,et al.  Laves phases, gamma-brass, and 2x2x2 superstructures: a new class of quasicrystal approximants and the suggestion of a new quasicrystal. , 2008, Chemistry.

[8]  B. Nebgen,et al.  The mystery of perpendicular fivefold axes and the fourth dimension in intermetallic structures. , 2008, Chemistry.

[9]  Richard G. Hennig,et al.  Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys , 2008, Nature.

[10]  R. Hoffmann,et al.  A quantum mechanically guided view of Mg44Rh7. , 2007, Chemistry.

[11]  R. Hoffmann,et al.  Interpenetrating polar and nonpolar sublattices in intermetallics: the NaCd(2) structure. , 2007, Angewandte Chemie.

[12]  B. Harbrecht,et al.  Pd(0.213)Cd(0.787) and Pd(0.235)Cd(0.765) structures: their long c axis and composite crystals, chemical twinning, and atomic site preferences. , 2007, Chemistry.

[13]  Darrick J. Williams,et al.  Atomic Distributions in the γ-Brass Structure of the Cu−Zn System: A Structural and Theoretical Study , 2007 .

[14]  R. Asahi,et al.  Mediated resonance effect of the vanadium 3d states on phase stability in the Al_8V_5 γ-brass studied by first-principles FLAPW and LMTO-ASA electronic structure calculations , 2006 .

[15]  V. Smetana,et al.  Li26 clusters in the compound Li13Na29Ba19. , 2006, Angewandte Chemie.

[16]  V. Degtyareva,et al.  Simple metals at high pressures: the Fermi sphere–Brillouin zone interaction model , 2006 .

[17]  R. Asahi,et al.  The Hume–Rothery electron concentration rule for a series of gamma-brasses studied by full-potential linearized augmented plane wave (FLAPW) , 2006 .

[18]  V. Petříček,et al.  Zn1− x Pd x ( x =0.14–0.24): a missing link between intergrowth compounds and quasicrystal approximants , 2006 .

[19]  R. Asahi,et al.  Interpretation of the Hume-Rothery electron concentration rule in the T 2 Zn 11 ( T = Ni , Pd, Co, and Fe) γ brasses based on first-principles FLAPW calculations , 2005 .

[20]  D. Nguyen-Manh,et al.  Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides , 2005 .

[21]  R. Asahi,et al.  Verification of Hume-Rothery electron concentration rule inCu5Zn8andCu9Al4γbrasses byab initioFLAPW band calculations , 2005 .

[22]  Peter M. Clark,et al.  Transition metal AB3 intermetallics: Structure maps based on quantum mechanical stability , 2005 .

[23]  I. A. MacLeod,et al.  Origin of the complex crystal structures of elements at intermediate pressure , 2004 .

[24]  B. Harbrecht,et al.  Structure–Composition Relations for the Partly Disordered Hume‐Rothery Phase Ir7+7δZn97−11δ (0.31≤δ≤0.58) , 2004 .

[25]  T. Takeuchi,et al.  Orbital hybridizations versus the Fermi surface–Brillouin zone interaction in strongly hybridizingAl−Li−Cu1∕1−1∕1−1∕1approximant , 2004 .

[26]  Roald Hoffmann,et al.  The Nowotny chimney ladder phases: following the c(pseudo) clue toward an explanation of the 14 electron rule. , 2004, Inorganic chemistry.

[27]  Roald Hoffmann,et al.  The Nowotny chimney ladder phases: whence the 14 electron rule? , 2004, Inorganic chemistry.

[28]  T. Takeuchi,et al.  Interpretation of the Hume-Rothery rule in quasicrystals and their approximants , 2004 .

[29]  Q. Jiang,et al.  A valence electron concentration criterion for glass-formation ability of metallic liquids , 2003 .

[30]  C. Pietzonka,et al.  Structure and Properties of γ‐Brass‐Type Pt2Zn11—δ (0.2 < δ < 0.3) , 2002 .

[31]  T. Takeuchi,et al.  Investigation of the Hume-Rothery stabilization mechanism from ab initio band calculations for different electron compounds: Cu5Zn8 and Al-Mg-Zn, Al-Cu-Ru-Si approximants , 2002 .

[32]  W. Jeitschko,et al.  Niobium and Molybdenum Compounds with High Zinc Content: NbZn3, NbZn16, and MoZn20.44 , 1999 .

[33]  D. Pettifor,et al.  A bandstructure view of the Hume‐Rothery electron phases , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[35]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[36]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[37]  Stephen Lee,et al.  Second moment scaling, metallic and covalent structure rationalization and electron counting rules , 1995 .

[38]  K. Yvon,et al.  Cubic Mg29Ir4 crystallizing with an ordered variant of the Mg6Pd-type structure , 1995 .

[39]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[40]  B. Harbrecht,et al.  Al69Ta39 : a new variant of a face-centred cubic giant cell structure , 1994 .

[41]  J. Burdett,et al.  Electronic structure of elemental calcium and zinc , 1993 .

[42]  Stephen Lee,et al.  The Hume-Rothery electron concentration rules and second moment scaling , 1991 .

[43]  D. Kothari,et al.  Quasicrystals: an electron phase , 1991 .

[44]  Stephen Lee,et al.  Second-moment scaling and covalent crystal structures , 1991 .

[45]  M. Whangbo,et al.  Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides , 1991 .

[46]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[47]  M. L. Fornasini,et al.  Crystal structures of Yb2Tl, Yb8Tl3 and Yb8In3 , 1989 .

[48]  A. Palenzona,et al.  Crystal structure of Y44Ru25 , 1989 .

[49]  J. Burdett Solids and surfaces: A chemist's view of bonding in extended structures: By Roald Hoffmann. VCH Publishers, New York, 1989. x + 142 pp. $24.95 , 1989 .

[50]  Ashcroft Quantum-solid behavior and the electronic structure of the light alkali metals. , 1989, Physical Review B (Condensed Matter).

[51]  I. Vincze,et al.  Are quasicrystals hume-rothery alloys? , 1989 .

[52]  R. Hoffman Solids and Surfaces: A Chemist's View of Bonding in Extended Structures , 1989 .

[53]  J. Krieg,et al.  The atomic and electronic structure of metallic glasses: search for a structure-induced minimum in the density of states , 1988 .

[54]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[55]  G. Tendeloo,et al.  Long-period superstructures in Cu3±xPd , 1986 .

[56]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[57]  Y. Grin,et al.  Crystal chemistry of series of inhomogeneous linear structures. VI. The crystal structure of the compound Ce3Ga15Ni2 , 1984 .

[58]  A. Koster,et al.  Structure of the cubic iron–zinc phase Fe22Zn78 , 1981 .

[59]  S. Andersson An alternative description of the structures of Rh7Mg44 and Mg6Pd , 1978 .

[60]  E. Parthé,et al.  The crystal structure of Sm11Cd45 with γ-brass and α-Mn clusters , 1978 .

[61]  W. B. Pearson,et al.  γ-Brasses with F cells , 1977 .

[62]  A. Morton Inversion anti‐phase domains in Cu‐rich γ‐brasses i. The domain structures , 1975 .

[63]  A. Morton Long-period superlattice formation in Cu-rich γ-brasses , 1974 .

[64]  D. M. P. Mingos A General Theory for Cluster and Ring Compounds of the Main Group and Transition Elements , 1972 .

[65]  S. Sampson,et al.  Complex cubic A6B compounds. I. The crystal structure of Na6Tl , 1972 .

[66]  S. Samson Complex cubic A_6B compounds. II. The crystal structure of Mg_6Pd , 1972 .

[67]  D. Stroud,et al.  Phase stability in binary alloys , 1971 .

[68]  K. Schubert,et al.  Struktur von Pt7Zn12 , 1969 .

[69]  S. Samson The crystal structure of the intermetallic compound Cu4Cd3 , 1967 .

[70]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[71]  N. Ashcroft Fermi Surfaces of Potassium and Rubidium , 1965 .

[72]  S. Samson The crsytal structure of the phase β Mg2Al3 , 1965 .

[73]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[74]  S. Samson Crystal Structure of NaCd2 , 1962, Nature.

[75]  W. Hume-rothery Electrons, Atoms, Metals and Alloys , 1955 .

[76]  H. Jones The Theory of Alloys in the Formula-Phase , 1934 .

[77]  E. Hückel,et al.  Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .

[78]  Erich Hckel,et al.  Quanstentheoretische Beitrge zum Benzolproblem: II. Quantentheorie der induzierten Polaritten , 1931 .

[79]  I. Langmuir TYPES OF VALENCE. , 1921, Science.

[80]  Irving Langmuir,et al.  THE ARRANGEMENT OF ELECTRONS IN ATOMS AND MOLECULES. , 1919 .

[81]  W. Steurer The Samson phase, β-Mg2Al3, revisited , 2007 .

[82]  T. Takeuchi,et al.  Interpretation of the Hume–Rothery rule in complex electron compounds: γ-phase Cu5Zn8 Alloy, FK-type Al30Mg40Zn30 and MI-type Al68Cu7Ru17Si8 1/1–1/1–1/1 approximants , 2004 .

[83]  K. Cenzual,et al.  Nested polyhedra units: a geometrical concept for describing complicated cubic structures , 1981 .

[84]  L. Arnberg,et al.  The Structure of the delta-Phase in the Cu--Sn System. A Phase of gamma-Brass Type with an 18 Å Superstructure. , 1976 .

[85]  L. Westin,et al.  The Crystal Structure of Ir7Mg44. , 1972 .

[86]  K. Wade The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds , 1971 .

[87]  S. Westman,et al.  Determination of the Structure of Cubic Gamma-Pt,Zn; a Phase of Gamma Brass Type with an 18 Å Superstructure. , 1970 .

[88]  C. Pedersen,et al.  A Redetermination of the Distribution of Atoms in Cu5Zn8, Cu5Cd8, and Cu9Al4. , 1968 .

[89]  H. Nowotny,et al.  Die Kristallstrukturen von Rh10Ga17 und Ir3Ga5 , 1967 .

[90]  R. Jaffee,et al.  Phase stability in metals and alloys : Battelle Institute Materials Science Colloquia, Geneva and Villars, Switzerland. March 7-12, 1966 , 1967 .

[91]  R. P.,et al.  The Theory of the Properties of Metals and Alloys , 1937, Nature.

[92]  E. Hückel,et al.  Quanstentheoretische Beiträge zum Benzolproblem , 1931 .