Joint Regularization of Phase and Amplitude of InSAR Data: Application to 3-D Reconstruction

Interferometric synthetic aperture radar (SAR) images suffer from a strong noise, and their regularization is often a prerequisite for successful use of their information. Independently of the unwrapping problem, interferometric phase denoising is a difficult task due to shadows and discontinuities. In this paper, we propose to jointly filter phase and amplitude data in a Markovian framework. The regularization term is expressed by the minimization of the total variation and may combine different information (phase, amplitude, optical data). First, a fast and approximate optimization algorithm for vectorial data is briefly presented. Then, two applications are described. The first one is a direct application of this algorithm for 3-D reconstruction in urban areas with very high resolution images. The second one is an adaptation of this framework to the fusion of SAR and optical data. Results on aerial SAR images are presented.

[1]  B. Zalesky Efficient Determination of Gibbs Estimators with Submodular Energy Functions , 2003, math/0304041.

[2]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[3]  Jaakko Astola,et al.  Absolute phase estimation: adaptive local denoising and global unwrapping. , 2008, Applied optics.

[4]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[5]  Vladimir Kolmogorov,et al.  New algorithms for the dual of the convex cost network flow problem with application to computer vision , 2007 .

[6]  Jérôme Darbon,et al.  SAR Image Regularization With Fast Approximate Discrete Minimization , 2009, IEEE Transactions on Image Processing.

[7]  Jérôme Darbon,et al.  JOINT FILTERING OF SAR INTERFEROMETRIC PHASE AND AMPLITUDE DATA IN URBAN AREAS BY TV MINIMIZATION , 2008 .

[8]  Gabriele Moser,et al.  Weight Parameter Optimization by the Ho–Kashyap Algorithm in MRF Models for Supervised Image Classification , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Nikos Komodakis,et al.  Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies , 2008, Comput. Vis. Image Underst..

[10]  Camillo J. Taylor,et al.  Graph Cuts via $\ell_1$ Norm Minimization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Wojciech Pieczynski,et al.  Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context , 2001, IEEE Trans. Geosci. Remote. Sens..

[13]  Fernando Pérez Nava,et al.  Change detection for remote sensing images with graph cuts , 2005 .

[14]  José M. N. Leitão,et al.  The ZπM algorithm: a method for interferometric image reconstruction in SAR/SAS , 2002, IEEE Trans. Image Process..

[15]  Ridha Touzi,et al.  A review of speckle filtering in the context of estimation theory , 2002, IEEE Trans. Geosci. Remote. Sens..

[16]  Silvana G. Dellepiane,et al.  Synthetic aperture radar image segmentation by a detail preserving Markov random field approach , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[18]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[19]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[20]  Henri Maître,et al.  A new statistical model for Markovian classification of urban areas in high-resolution SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Jérôme Darbon,et al.  Joint Filtering of SAR Interferometric and Amplitude Data in Urban Areas by TV Minimization , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[23]  Olaf Hellwich,et al.  Unsupervised classification of polarimetric SAR data using graph cut optimization , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[24]  Jérôme Darbon Composants logiciels et algorithmes de minimisation exacte d'énergies dédiées au traitement des images , 2005 .

[25]  Patrick Wambacq,et al.  Speckle filtering of synthetic aperture radar images : a review , 1994 .

[26]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[28]  Vito Pascazio,et al.  Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters , 2002, IEEE Trans. Image Process..

[29]  Florence Tupin,et al.  Markov random field on region adjacency graph for the fusion of SAR and optical data in radargrammetric applications , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Ridha Touzi,et al.  Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields , 1996, IEEE Trans. Geosci. Remote. Sens..

[31]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[32]  E Trouvé,et al.  Fringe detection in noisy complex interferograms. , 1996, Applied optics.

[33]  P. J. Narayanan,et al.  CUDA cuts: Fast graph cuts on the GPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[34]  Henri Maitre,et al.  Processing of Synthetic Aperture Radar (SAR) Images , 2008 .

[35]  Fulvio Gini,et al.  Feasibility study of along-track SAR interferometry with the COSMO-Skymed satellite system , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[36]  Henri Maître,et al.  A Fusion Scheme for Joint Retrieval of Urban Height Map and Classification From High-Resolution Interferometric SAR Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[37]  José Dias,et al.  The Z π M Algorithm for Interferometric Image Reconstruction in SAR / SAS , 2001 .

[38]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[40]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part II: Levelable Functions, Convex Priors and Non-Convex Cases , 2006, Journal of Mathematical Imaging and Vision.

[41]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Mihai Datcu,et al.  Model-based despeckling and information extraction from SAR images , 2000, IEEE Trans. Geosci. Remote. Sens..

[43]  Roland Romeiser,et al.  Theoretical Evaluation of Several Possible Along-Track InSAR Modes of TerraSAR-X for Ocean Current Measurements , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[45]  Dorit S. Hochbaum,et al.  Solving the Convex Cost Integer Dual Network Flow Problem , 1999, Manag. Sci..

[46]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[47]  Wotao Yin,et al.  A comparison of three total variation based texture extraction models , 2007, J. Vis. Commun. Image Represent..