Evolution of superclusters in the cosmic web

Aims. We investigate how properties of the ensemble of superclusters in the cosmic web evolve with time. Methods. We performed numerical simulations of the evolution of the cosmic web using the Λ cold dark matter model in box sizes L0 = 1024, 512, 256 h−1 Mpc. We found supercluster ensembles of models for four evolutionary stages, corresponding to the present epoch z = 0, and to redshifts z = 1, z = 3, and z = 10. We calculated fitness diameters of superclusters defined from volumes of superclusters divided by filling factors of over-density regions. Geometrical and fitness diameters of largest superclusters, and the number of superclusters as functions of the threshold density were used as percolation functions to describe geometrical properties of the ensemble of superclusters in the cosmic web. We calculated the distributions of geometrical and fitness diameters and luminosities of superclusters, and followed the time evolution of percolation functions and supercluster distributions. We compared percolation functions and supercluster distributions of models and samples of galaxies of the Sloan Digital Sky Survey (SDSS). Results. Our analysis shows that fitness diameters of superclusters have a minimum at a certain threshold density. Fitness diameters around minima almost do not change with time in co-moving coordinates. Numbers of superclusters have maxima which are approximately constant for all evolutionary epochs. The geometrical diameters of superclusters decrease during the evolution of the cosmic web, and the luminosities of superclusters increase during this evolution. Conclusions. Our study suggests that evolutionary changes occur inside supercluster cells of dynamical influence. The stability of fitness diameters and numbers of superclusters during the evolution is an important property of the cosmic web.

[1]  F. Prada,et al.  Effects of long-wavelength fluctuations in large galaxy surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  J. Einasto,et al.  Extended percolation analysis of the cosmic web , 2018, Astronomy & Astrophysics.

[3]  C. Maraston,et al.  BOSS Great Wall: morphology, luminosity, and mass , 2017, 1703.08444.

[4]  J. Einasto,et al.  Proceedings of the International Astronomical Union : The Zeldovich Universe: Genesis and Growth of the Cosmic Web, Proc. IAU Symp. 308 , 2016 .

[5]  J. Einasto,et al.  Sloan Great Wall as a complex of superclusters with collapsing cores , 2016, 1608.04988.

[6]  J. Einasto,et al.  Characteristic density contrasts in the evolution of superclusters. The case of A2142 supercluster , 2015, 1506.05252.

[7]  S. Zaroubi,et al.  On the definition of superclusters , 2015, 1502.04584.

[8]  Y. Hoffman,et al.  The Laniakea supercluster of galaxies , 2014, Nature.

[9]  Durham,et al.  Evolution of the cosmic web , 2014, 1401.7866.

[10]  E. Tago,et al.  Groups and clusters of galaxies in the SDSS DR8 - Value-added catalogues , 2011, 1112.4648.

[11]  D. Lambas,et al.  Future virialized structures: an analysis of superstructures in the SDSS-DR7 , 2011, 1101.1961.

[12]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[13]  E. Saar,et al.  SDSS DR7 superclusters - The catalogues , 2010, 1012.1989.

[14]  F. Durret,et al.  Morphological properties of superclusters of galaxies , 2010, 1010.0981.

[15]  Baltimore.,et al.  Multiscale phenomenology of the cosmic web , 2010, 1007.0742.

[16]  J. Einasto,et al.  Groups of galaxies in the SDSS Data Release 7 - Flux- and volume-limited samples , 2010 .

[17]  A. Szalay,et al.  Unfolding the hierarchy of voids , 2010, 1002.1503.

[18]  F. Kitaura,et al.  Bayesian non-linear large scale structure inference of the Sloan Digital Sky Survey data release 7 , 2009, 0911.2498.

[19]  J. Einasto,et al.  Anatomy of luminosity functions: the 2dFGRS example , 2008, 0805.4264.

[20]  J. Einasto,et al.  Luminous superclusters: remnants from inflation? , 2006, astro-ph/0605393.

[21]  D. Tucker,et al.  Superclusters of galaxies from the 2dF redshift survey - I. The catalogue , 2006, astro-ph/0603764.

[22]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[23]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[24]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[25]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[26]  S. Allam,et al.  Clusters and superclusters in the Las Campanas redshift survey , 2003, astro-ph/0304546.

[27]  Enn Saar,et al.  Statistics of the Galaxy Distribution , 2001 .

[28]  J. Einasto,et al.  Optical and X-Ray Clusters as Tracers of the Supercluster-Void Network. I. Superclusters of Abell and X-Ray Clusters , 2000, astro-ph/0012536.

[29]  S. Colombi,et al.  Tree structure of a percolating Universe. , 2000, Physical review letters.

[30]  B. Sidharth,et al.  Large Scale Structures in the Universe , 1999, gr-qc/9903053.

[31]  R. Cen,et al.  Steps toward the Power Spectrum of Matter. II. The Biasing Correction with σ8 Normalization , 1998, astro-ph/9812248.

[32]  A. Fairall Large-Scale Structures in the Universe , 1998 .

[33]  S. Shandarin,et al.  Detection of Network Structure in the Las Campanas Redshift Survey , 1997, astro-ph/9705155.

[34]  B. Sathyaprakash,et al.  Probing Large-Scale Structure Using Percolation and Genus Curves , 1996, astro-ph/9612029.

[35]  J. Einasto,et al.  The supercluster–void network - I. The supercluster catalogue and large-scale distribution , 1996, astro-ph/9610088.

[36]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[37]  S. Shandarin,et al.  Universality of the Network and Bubble Topology in Cosmological Gravitational Simulations , 1995, astro-ph/9509052.

[38]  E. Bertschinger COSMICS: Cosmological Initial Conditions and Microwave Anisotropy Codes , 1995, astro-ph/9506070.

[39]  J. Einasto,et al.  The structure of the Universe traced by rich clusters of galaxies. , 1994 .

[40]  A. Klypin,et al.  Percolation technique for galaxy clustering , 1993 .

[41]  J. Einasto,et al.  Transition Scale to a Homogeneous Universe , 1993 .

[42]  G. Abell,et al.  A Catalog of Rich Clusters of Galaxies , 1989 .

[43]  L. Kofman,et al.  Theory of adhesion for the large-scale structure of the Universe , 1988, Nature.

[44]  Simon D. M. White,et al.  Clustering in a neutrino-dominated universe , 1983 .

[45]  J. Einasto,et al.  Giant voids in the Universe , 1982, Nature.

[46]  J. Einasto,et al.  Structure of superclusters and supercluster formation , 1980 .

[47]  D. Stauffer Scaling Theory of Percolation Clusters , 1979, Complex Media and Percolation Theory.

[48]  J. Gott,et al.  N-body simulations of galaxy clustering. I. Initial conditions and galaxy collapse times , 1979 .

[49]  G. D. Vaucouleurs The Local Supercluster of Galaxies , 1958, Nature.

[50]  G. Abell The Distribution of rich clusters of galaxies , 1958 .

[51]  G. Vaucouleurs Evidence for a local super,galaxy , 1953 .

[52]  P. Wild,et al.  Catalogue of Galaxies and of Clusters of Galaxies , 1961 .