Compact diode laser source for multiphoton biological imaging

We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. © 2016 Optical Society of America OCIS codes: (140.3538) Lasers, pulsed; (140.5960) Semiconductor lasers; (180.2520) Fluorescence microscopy; (180.4315) Nonlinear microscopy. References and links 1. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28, 1022–1024 (2003). 2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2 (2005). 3. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354–13364 (2009). 4. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7, 205–209 (2013). 5. T. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499, 295–300 (2013). 6. M. R. Warden, J. A. Cardin, and K. Deisseroth, “Optical neural interfaces,” Annu. Rev. Biomed. Eng. 16, 103–129 (2014). 7. C. T. Wentz, J. G. Bernstein, P. Monahan, A. Guerra, A. Rodriguez, and E. S. Boyden, “A wirelessly powered and controlled device for optical neural control of freely-behaving animals,” J. Neural Eng. 8, 046021 (2011). 8. M. E. Llewellyn, K. R. Thompson, K. Deisseroth, and S. L. Delp, “Orderly recruitment of motor units under optical control in vivo,” Nat. Med. 16, 1161–1165 (2010). 9. L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-loop and activity-guided optogenetic control,” Neuron 86, 106–139 (2015). 10. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). 11. D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophoton. 1, 53–61 (2008). 12. S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009). 13. L. Huang, A. K. Mills, Y. Zhao, D. J. Jones, and S. Tang, “Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser,” Biomed. Opt. Express 7, 1948–1956 (2016). 14. E. P. Perillo, J. E. McCracken, D. C. Fernée, J. R. Goldak, F. A. Medina, D. R. Miller, H.-C. Yeh, and A. K. Dunn, “Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser,” Biomed. Opt. Express 7, 324–334 (2016). 15. M. Kuramoto, N. Kitajima, H. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett. 32, 2726–2728 (2007). Vol. 8, No. 1 | 1 Jan 2017 | BIOMEDICAL OPTICS EXPRESS 315 #268560 Journal © 2017 http://dx.doi.org/10.1364/BOE.8.000315 Received 7 Sep 2016; revised 3 Nov 2016; accepted 3 Nov 2016; published 16 Dec 2016 16. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2, 739–747 (2011). 17. J. T. Gopinath, B. Chann, R. K. Huang, C. Harris, J. J. Plant, L. Missaggia, J. P. Donnelly, P. W. Juodawlkis, and D. J. Ripin, “980-nm monolithic passively mode-locked diode lasers with 62 pJ of pulse energy,” IEEE Photon. Tech. Lett. 19, 937–939 (2007). 18. F. R. Ahmad, Y. W. Tseng, M. A. Kats, and F. Rana, “Energy limits imposed by two-photon absorption for pulse amplification in high-power semiconductor optical amplifiers,” Opt. Lett. 33, 1041–1043 (2008). 19. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14, 3467–3471 (2006). 20. K. Taira, T. Hashimoto, and H. Yokoyama, “Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode,” Opt. Express 15, 2454–2458 (2007). 21. H. Yokoyama, H. Tsubokawa, H. Guo, J. Shikata, K. Sato, K. Takashima, K. Kashiwagi, N. Saito, H. Taniguchi, and H. Ito, “Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source,” J. Biomed. Opt. 12, 054019 (2007). 22. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989). 23. T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35, 1412–1418 (1999). 24. J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32, 1408–1410 (2007). 25. Y. Dai and C. Xu, “Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop,” Opt. Express 17, 6584–6590 (2009). 26. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011). 27. K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18, 24019–24024 (2010). 28. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013). 29. K. Wang and C. Xu, “Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source,” Opt. Lett. 36, 942–944 (2011). 30. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013). 31. X. Guo, V. Olle, A. Quarterman, A.Wonfor, R. Penty, and I.White, “Monolithically integrated selectable repetition-rate laser diode source of picosecond optical pulses,” Opt. Lett. 39, 4144–4147 (2014). 32. K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit, “InP photonic circuits using generic integration,” Photon. Res. 3, B60–B68 (2015). 33. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003). 34. E. G. Hughes and B. Appel, “The cell biology of CNS myelination,” Curr. Opin. Neurobiol. 39, 93–100 (2016). 35. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005). 36. B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40, 2553–2556 (2015).

[1]  E. Hughes,et al.  The cell biology of CNS myelination , 2016, Current Opinion in Neurobiology.

[2]  A. Mills,et al.  Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser , 2016, Biomedical optics express.

[3]  Hsin-Chih Yeh,et al.  Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser. , 2016, Biomedical optics express.

[4]  Karl Deisseroth,et al.  Closed-Loop and Activity-Guided Optogenetic Control , 2015, Neuron.

[5]  Xuhan Guo,et al.  Monolithically integrated selectable repetition-rate laser diode source of picosecond optical pulses. , 2014, Optics letters.

[6]  Jessica A. Cardin,et al.  Optical neural interfaces. , 2014, Annual review of biomedical engineering.

[7]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[8]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  F. Wise,et al.  In vivo three-photon microscopy of subcortical structures within an intact mouse brain , 2012, Nature Photonics.

[10]  Atsushi Takada,et al.  Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode. , 2011, Optics express.

[11]  Alex Rodriguez,et al.  A wirelessly powered and controlled device for optical neural control of freely-behaving animals , 2011, Journal of neural engineering.

[12]  Chris Xu,et al.  Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source. , 2011, Optics letters.

[13]  George Filippidis,et al.  Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms , 2011, Biomedical optics express.

[14]  Christian W. Freudiger,et al.  Synchronized time-lens source for coherent Raman scattering microscopy , 2010, Optics express.

[15]  K. Deisseroth,et al.  Orderly recruitment of motor units under optical control in vivo , 2010, Nature Medicine.

[16]  N. Nishimura,et al.  Deep tissue multiphoton microscopy using longer wavelength excitation. , 2009, Optics express.

[17]  Bruce J Tromberg,et al.  Developing compact multiphoton systems using femtosecond fiber lasers. , 2009, Journal of biomedical optics.

[18]  Yitang Dai,et al.  Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop. , 2009, Optics express.

[19]  M. Kats,et al.  Energy limits imposed by two-photon absorption for pulse amplification in high-power semiconductor optical amplifiers. , 2008, Optics letters.

[20]  A. Jeromin,et al.  Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source , 2008, Journal of biophotonics.

[21]  Masao Ikeda,et al.  Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source. , 2007, Optics letters.

[22]  Hiroyuki Yokoyama,et al.  Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source. , 2007, Journal of biomedical optics.

[23]  P. Juodawlkis,et al.  980-nm Monolithic Passively Mode-Locked Diode Lasers With 62 pJ of Pulse Energy , 2007, IEEE Photonics Technology Letters.

[24]  Chris Xu,et al.  Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking. , 2007, Optics letters.

[25]  Hiroyuki Yokoyama,et al.  Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode. , 2007, Optics express.

[26]  Hiroyuki Yokoyama,et al.  Two-photon bioimaging with picosecond optical pulses from a semiconductor laser. , 2006, Optics express.

[27]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[28]  Conor L Evans,et al.  Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[30]  Dae-Sik Kim,et al.  Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation , 1999 .

[31]  W. Webb,et al.  Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm , 1996 .

[32]  B. Kolner,et al.  Temporal imaging with a time lens. , 1989, Optics letters.

[33]  Meint Meint Smit,et al.  InP photonic circuits using generic integration , 2015 .