Bubble and Hermite Natural Element Approximations
暂无分享,去创建一个
[1] D. Malkus. Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .
[2] Satya N. Atluri,et al. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method , 1998 .
[3] Hui-Ping Wang,et al. An improved reproducing kernel particle method for nearly incompressible finite elasticity , 2000 .
[4] René de Borst,et al. Conditions for locking-free elasto-plastic analyses in the Element-Free Galerkin method , 1999 .
[5] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[6] Manuel Doblaré,et al. Imposing essential boundary conditions in the natural element method by means of density-scaled?-shapes , 2000 .
[7] K. Bathe. Finite Element Procedures , 1995 .
[8] Philippe Lorong,et al. The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces , 2005 .
[9] Antonio Huerta,et al. Locking in the incompressible limit for the element‐free Galerkin method , 2001 .
[10] Wing Kam Liu,et al. Mesh-free simulations of shear banding in large deformation , 2000 .
[11] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[12] Ted Belytschko,et al. Volumetric locking in the element free Galerkin method , 1999 .
[13] T.-L. Zhu,et al. A reliability-based safety factor for aircraft composite structures , 1993 .
[14] B. Nayroles,et al. Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .
[15] M. Sambridge,et al. Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .
[16] Philippe Lorong,et al. Simulating Dynamic Thermo-Elasto-Plasticity in large Transformations with Adaptive Refinement in the NEM. Application to Shear Banding , 2005 .
[17] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[18] Alain Rassineux,et al. Surface remeshing by local hermite diffuse interpolation , 2000 .
[19] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[20] F. Chinesta,et al. A new extension of the natural element method for non‐convex and discontinuous problems: the constrained natural element method (C‐NEM) , 2004 .
[21] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[22] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[23] T. Belytschko,et al. THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .
[24] B. Moran,et al. Stabilized conforming nodal integration in the natural‐element method , 2004 .
[25] Bruce R. Piper. Properties of Local Coordinates Based on Dirichlet Tesselations , 1993, Geometric Modelling.
[26] Kokichi Sugihara,et al. Improving continuity of Voronoi-based interpolation over Delaunay spheres , 2002, Comput. Geom..
[27] Jiun-Shyan Chen,et al. Large deformation analysis of rubber based on a reproducing kernel particle method , 1997 .
[28] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[29] K. Bathe,et al. The inf-sup test , 1993 .
[30] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[31] O. Zienkiewicz,et al. The hierarchical concept in finite element analysis , 1983 .
[32] Locking in the incompressible limit: pseudo-divergence-free element free Galerkin , 2003 .
[33] Elías Cueto,et al. Volumetric locking in natural neighbour Galerkin methods , 2004 .