A bright year for tidal disruptions

When a star is tidally disrupted by a supermassive black hole (BH), roughly half of its mass falls back to the BH at super-Eddington rates. Being tenuously gravitationally bound and unable to cool radiatively, only a small fraction f_in few 1e4 K, converting the emission to optical/near-UV wavelengths where photons more readily escape due to the lower opacity. This can explain the unexpectedly low and temporally constant effective temperatures of optically-discovered TDE flares. For BHs with relatively high masses M_BH > 1e7 M_sun the ejecta can become ionized at an earlier stage, or for a wider range of viewing angles, producing a TDE flare which is instead dominated by thermal X-ray emission. We predict total radiated energies consistent with those of observed TDE flares, and ejecta velocities that agree with the measured emission line widths. The peak optical luminosity for M_BH < 1e6 M_sun is suppressed due to adiabatic losses in the inner disk wind, possibly contributing to the unexpected dearth of optical TDEs in galaxies with low mass BHs. In the classical picture, where f_in ~ 1, TDEs de-spin supermassive BHs and cap their maximum spins well below theoretical accretion physics limits. This cap is greatly relaxed in our model, and existing Fe K-alpha spin measurements provide suggestive preliminary evidence that f_in < 1.

[1]  R. Narayan,et al.  Three-dimensional simulations of supercritical black hole accretion discs - luminosities, photon trapping and variability , 2015, 1509.03168.

[2]  Daniel J. Price,et al.  Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes , 2015, 1501.04635.

[3]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[4]  M. Miller,et al.  SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS , 2015, 1507.04333.

[5]  T. Piran,et al.  DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS? , 2015 .

[6]  D. Merritt GRAVITATIONAL ENCOUNTERS AND THE EVOLUTION OF GALACTIC NUCLEI. II. CLASSICAL AND RESONANT RELAXATION , 2015, 1506.03010.

[7]  S. Mineshige,et al.  COMPARISON BETWEEN RHD SIMULATION OF SUPERCRITICAL ACCRETION FLOWS AND A STEADY MODEL WITH OUTFLOWS , 2015, 1504.06468.

[8]  P. Laguna,et al.  ULTRA-CLOSE ENCOUNTERS OF STARS WITH MASSIVE BLACK HOLES: TIDAL DISRUPTION EVENTS WITH PROMPT HYPERACCRETION , 2015, 1502.05740.

[9]  M. Miller,et al.  DISK WINDS AS AN EXPLANATION FOR SLOWLY EVOLVING TEMPERATURES IN TIDAL DISRUPTION EVENTS , 2015, 1502.03284.

[10]  K. Wiersema,et al.  A MULTIWAVELENGTH STUDY OF THE RELATIVISTIC TIDAL DISRUPTION CANDIDATE SWIFT J2058.4+0516 AT LATE TIMES , 2015, 1502.01345.

[11]  L. Bildsten,et al.  PHOTOIONIZATION HEATING OF NOVA EJECTA BY THE POST-OUTBURST SUPERSOFT SOURCE , 2015, 1501.05690.

[12]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[13]  T. Piran,et al.  GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION , 2015, 1501.04365.

[14]  B. Metzger,et al.  The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath , 2015, 1501.00361.

[15]  A. Tchekhovskoy,et al.  Global simulations of axisymmetric radiative black hole accretion discs in general relativity with a mean-field magnetic dynamo , 2014, 1407.4421.

[16]  N. Kylafis,et al.  The Formation and Disruption of Black Hole Jets , 2015 .

[17]  J. Guillochon,et al.  A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT? , 2014, 1410.6014.

[18]  J. Stone,et al.  A GLOBAL THREE-DIMENSIONAL RADIATION MAGNETO-HYDRODYNAMIC SIMULATION OF SUPER-EDDINGTON ACCRETION DISKS , 2014, 1410.0678.

[19]  G. Farrar,et al.  MEASUREMENT OF THE RATE OF STELLAR TIDAL DISRUPTION FLARES , 2014, 1407.6425.

[20]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[21]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[22]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[23]  M. Begelman,et al.  HYPERACCRETION DURING TIDAL DISRUPTION EVENTS: WEAKLY BOUND DEBRIS ENVELOPES AND JETS , 2013, 1312.5314.

[24]  B. Metzger,et al.  Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae , 2013, 1307.8115.

[25]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[26]  J. Silk,et al.  Black hole evolution – III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations , 2013, 1304.4583.

[27]  Columbia,et al.  Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event , 2013, 1301.1982.

[28]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[29]  D. Merritt Dynamics and Evolution of Galactic Nuclei , 2013 .

[30]  C. Reynolds The spin of supermassive black holes , 2013, 1307.3246.

[31]  C. Matzner,et al.  EVOLUTION OF ACCRETION DISKS IN TIDAL DISRUPTION EVENTS , 2013, 1305.5570.

[32]  T. Piran,et al.  ON THE ORIGIN OF THE RADIO EMISSION OF Sw 1644+57 , 2013, 1304.1542.

[33]  India,et al.  THE 2013 RELEASE OF CLOUDY , 2013, 1302.4485.

[34]  D. Merritt,et al.  THE LOSS-CONE PROBLEM IN AXISYMMETRIC NUCLEI , 2013, 1301.3150.

[35]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[36]  A. Loeb,et al.  Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits , 2012, 1210.1333.

[37]  D. Frail,et al.  Constraints on off-axis jets from stellar tidal disruption flares , 2012, 1210.0022.

[38]  Joshua S. Bloom,et al.  LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS , 2012, 1210.0020.

[39]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[40]  D. Kasen,et al.  SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.

[41]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[42]  R. D. Saxton,et al.  A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5 , 2012, 1202.5900.

[43]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[44]  E. Berger,et al.  RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. I. JET ENERGETICS AND THE PRISTINE PARSEC-SCALE ENVIRONMENT OF A SUPERMASSIVE BLACK HOLE , 2011, 1112.1697.

[45]  C. Gammie,et al.  GLOBAL GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF BLACK HOLE ACCRETION FLOWS: A CONVERGENCE STUDY , 2012 .

[46]  P. Giommi,et al.  Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.

[47]  Eran O. Ofek,et al.  SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE? , 2011, 1107.5307.

[48]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[49]  Nathaniel R. Butler,et al.  PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy , 2011, 1103.0779.

[50]  A. Sa̧dowski,et al.  Spinning up black holes with super-critical accretion flows , 2011, 1102.2456.

[51]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[52]  Israel,et al.  Multiband light curves of tidal disruption events , 2010, 1008.4589.

[53]  M. Eracleous,et al.  A TIDAL DISRUPTION FLARE IN A1689 FROM AN ARCHIVAL X-RAY SURVEY OF GALAXY CLUSTERS , 2010, 1008.4140.

[54]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[55]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[56]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[57]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[58]  D. Kasen,et al.  THREE-DIMENSIONAL SIMULATIONS OF TIDALLY DISRUPTED SOLAR-TYPE STARS AND THE OBSERVATIONAL SIGNATURES OF SHOCK BREAKOUT , 2008, 0811.1370.

[59]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[60]  R. D. Saxton,et al.  Evolution of tidal disruption candidates discovered by XMM-Newton , 2008, 0807.4452.

[61]  Marta Volonteri,et al.  Cosmological Black Hole Spin Evolution by Mergers and Accretion , 2008, 0802.0025.

[62]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[63]  Princeton,et al.  The Co-Formation of Spheroids and Quasars Traced in their Clustering , 2006, astro-ph/0611792.

[64]  S. Komossa,et al.  Tidal disruption of stars by supermassive black holes: Status of observations , 2015, 1505.01093.

[65]  S. Gezari,et al.  Ultraviolet Detection of the Tidal Disruption of a Star by a Supermassive Black Hole , 2006, astro-ph/0612069.

[66]  M. Chernyakova,et al.  Relativistic cross sections of mass stripping and tidal disruption of a star by a super-massive rotating black hole , 2005, astro-ph/0509853.

[67]  M. Mori,et al.  Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping , 2005, astro-ph/0504168.

[68]  Peter Nugent,et al.  Discovery of a Transient U-Band Dropout in a Lyman Break Survey: A Tidally Disrupted Star at z = 3.3? , 2004, astro-ph/0405482.

[69]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[70]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[71]  S. Shapiro,et al.  Black Hole Spin Evolution , 2003, astro-ph/0310886.

[72]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[73]  J. Hawley,et al.  The Dynamical Structure of Nonradiative Black Hole Accretion Flows , 2002, astro-ph/0203309.

[74]  M. Livio,et al.  Tidal Disruption of a Solar-Type Star by a Supermassive Black Hole , 2000, astro-ph/0002499.

[75]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[76]  J. Pringle,et al.  Hydrodynamical non-radiative accretion flows in two dimensions , 1999, astro-ph/9908185.

[77]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[78]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[79]  A. Loeb,et al.  Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole , 1997, astro-ph/9703079.

[80]  C. Kochanek The Aftermath of tidal disruption: The Dynamics of thin gas streams , 1994 .

[81]  A. Beloborodov,et al.  Angular momentum of a supermassive black hole in a dense star cluster , 1992 .

[82]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[83]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[84]  D. Osterbrock,et al.  Book-Review - Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[85]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[86]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[87]  J. Katz,et al.  The passage of a star by a massive black hole , 1982 .

[88]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[89]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[90]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .