Discovering calendar-based temporal association rules

We study the problem of mining association rules and related time intervals, where an association rule holds either in all or some of the intervals. To restrict to meaningful time intervals, we use calendar schemas and their calendar-based patterns. A calendar schema example is (year, month, day) and a calendar-based pattern within the schema is (*, 3, 15), which represents the set of time intervals each corresponding to the 15th day of a March. Our focus is finding efficient algorithms for this mining problem by extending the well-known Apriori algorithm with effective pruning techniques. We evaluate our techniques via experiments.

[1]  Xiaodong Chen,et al.  A Framework for Temporal Data Mining , 1998, DEXA.

[2]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[3]  Sridhar Ramaswamy,et al.  Cyclic association rules , 1998, Proceedings 14th International Conference on Data Engineering.

[4]  Jiong Yang,et al.  TAR: temporal association rules on evolving numerical attributes , 2001, Proceedings 17th International Conference on Data Engineering.

[5]  X.S. Wang,et al.  Discovering Frequent Event Patterns with Multiple Granularities in Time Sequences , 1998, IEEE Trans. Knowl. Data Eng..

[6]  Dimitrios Gunopulos,et al.  Constraint-Based Rule Mining in Large, Dense Databases , 2004, Data Mining and Knowledge Discovery.

[7]  John F. Roddick,et al.  YABTSSTDMR, Yet Another Bibliography of Temporal, Spatial, and Spatio-Temporal Data Mining Resear , 2001 .

[8]  Renée J. Miller,et al.  Association rules over interval data , 1997, SIGMOD '97.

[9]  Sridhar Ramaswamy,et al.  On the Discovery of Interesting Patterns in Association Rules , 1998, VLDB.

[10]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[11]  Sushil Jajodia,et al.  Discovering Temporal Patterns in Multiple Granularities , 2000, TSDM.

[12]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[13]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[14]  Laks V. S. Lakshmanan,et al.  Exploratory mining via constrained frequent set queries , 1999, SIGMOD '99.

[15]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[16]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[17]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[18]  Heikki Mannila,et al.  Discovering Frequent Episodes in Sequences , 1995, KDD.

[19]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[20]  Vipin Kumar,et al.  Scalable parallel data mining for association rules , 1997, SIGMOD '97.

[21]  Carla E. Brodley,et al.  KDD-Cup 2000 organizers' report: peeling the onion , 2000, SKDD.

[22]  Chun Zhang,et al.  Storing and querying ordered XML using a relational database system , 2002, SIGMOD '02.

[23]  Gustavo Rossi,et al.  An approach to discovering temporal association rules , 2000, SAC '00.

[24]  Sushil Jajodia,et al.  Discovering calendar-based temporal association rules , 2001, Proceedings Eighth International Symposium on Temporal Representation and Reasoning. TIME 2001.

[25]  Sushil Jajodia,et al.  Time Granularities in Databases, Data Mining, and Temporal Reasoning , 2000, Springer Berlin Heidelberg.

[26]  John F. Roddick,et al.  Adding Temporal Semantics to Association Rules , 1999, PKDD.

[27]  David Forster,et al.  A Representation for Collections of Temporal Intervals , 1986, AAAI.

[28]  Rakesh Agrawal,et al.  Parallel Mining of Association Rules , 1996, IEEE Trans. Knowl. Data Eng..

[29]  Masaru Kitsuregawa,et al.  Parallel mining algorithms for generalized association rules with classification hierarchy , 1997, SIGMOD '98.

[30]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[31]  Xiaodong Chen,et al.  Mining Temporal Features in Association Rules , 1999, PKDD.

[32]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.