The estimation of ultrametric and path length trees from rectangular proximity data

A least-squares algorithm for fitting ultrametric and path length or additive trees to two-way, two-mode proximity data is presented. The algorithm utilizes a penalty function to enforce the ultrametric inequality generalized for asymmetric, and generally rectangular (rather than square) proximity matrices in estimating an ultrametric tree. This stage is used in an alternating least-squares fashion with closed-form formulas for estimating path length constants for deriving path length trees. The algorithm is evaluated via two Monte Carlo studies. Examples of fitting ultrametric and path length trees are presented.

[1]  A. Tversky,et al.  Spatial versus tree representations of proximity data , 1982 .

[2]  J. Lackner,et al.  The Psychological Representation of Speech Sounds , 1975, The Quarterly journal of experimental psychology.

[3]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[4]  R. Courant Differential and Integral Calculus , 1935 .

[5]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[6]  Singiresu S. Rao,et al.  Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  R. Tryon Cluster Analysis , 1939 .

[8]  Niels Blunch,et al.  Paul E. Green and Donald S. Tull: Research for Marketing Decisions . Prentice-Hall, Inc., Englewood Cliffs, N. ,J. 1966. , 1967 .

[9]  A. Tversky,et al.  Additive similarity trees , 1977 .

[10]  Bruce L. Stern,et al.  Research for Marketing Decisions , 1978 .

[11]  Paul J. Schweitzer,et al.  Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..

[12]  G. A. Miller,et al.  An Analysis of Perceptual Confusions Among Some English Consonants , 1955 .

[13]  A. Dobson Unrooted trees for numerical taxonomy , 1974, Journal of Applied Probability.

[14]  J. Hartigan REPRESENTATION OF SIMILARITY MATRICES BY TREES , 1967 .

[15]  C. Coombs A theory of data. , 1965, Psychology Review.

[16]  J. Cunningham,et al.  Free trees and bidirectional trees as representations of psychological distance , 1978 .

[17]  J. Carroll,et al.  Spatial, non-spatial and hybrid models for scaling , 1976 .

[18]  John A. Sonquist,et al.  Multivariate model building;: The validation of a search strategy , 1970 .

[19]  W. DeSarbo Gennclus: New models for general nonhierarchical clustering analysis , 1982 .

[20]  J. A. Hartigan,et al.  Modal Blocks in Dentition of West Coast Mammals , 1976 .

[21]  J. Farris Estimating Phylogenetic Trees from Distance Matrices , 1972, The American Naturalist.

[22]  Patrick J. Robinson,et al.  AID and MCA in Multivariate Analysis@@@Multivariate Model Building; The Validation of a Search Strategy , 1971 .

[23]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[24]  Roger N. Shepard,et al.  Additive clustering: Representation of similarities as combinations of discrete overlapping properties. , 1979 .

[25]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[26]  G. Soete A least squares algorithm for fitting additive trees to proximity data , 1983 .

[27]  W. DeSarbo,et al.  The representation of three-way proximity data by single and multiple tree structure models , 1984 .

[28]  G. W. Snedecor STATISTICAL METHODS , 1967 .

[29]  G. Furnas The generation of random, binary unordered trees , 1984 .