Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions.

Topological insulators are a unique class of materials characterized by a Dirac cone state of helical Dirac fermions in the middle of a bulk gap. When the thickness of a three-dimensional topological insulator is reduced, however, the interaction between opposing surface states opens a gap that removes the helical Dirac cone, converting the material back to a normal system of ordinary fermions. Here we demonstrate, using density function theory calculations and experiments, that it is possible to create helical Dirac fermion state by interfacing two gapped films-a single bilayer Bi grown on a single quintuple layer Bi(2)Se(3) or Bi(2)Te(3). These extrinsic helical Dirac fermions emerge in predominantly Bi bilayer states, which are created by a giant Rashba effect with a coupling constant of ~4 eV·Å due to interfacial charge transfer. Our results suggest that this approach is a promising means to engineer topological insulator states on non-metallic surfaces.

[1]  Hong Guo,et al.  Helical states of topological insulator Bi₂Se₃. , 2011, Nano letters.

[2]  C. Beenakker,et al.  Electrically detected interferometry of Majorana fermions in a topological insulator. , 2009, Physical review letters.

[3]  B Andrei Bernevig,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[4]  Dong Qian,et al.  Spatial and energy distribution of topological edge states in single Bi(111) bilayer. , 2012, Physical review letters.

[5]  S. Louie,et al.  Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles. , 2010, Physical review letters.

[6]  H. Okuyama,et al.  Large Rashba spin splitting of surface resonance bands on semiconductor surface , 2009 .

[7]  W. Duan,et al.  Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first-principles study. , 2011, Physical review letters.

[8]  K. Kern,et al.  Silicon surface with giant spin splitting. , 2009, Physical review letters.

[9]  Shuichi Murakami,et al.  Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. , 2006, Physical review letters.

[10]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[11]  Klaus Kern,et al.  Reactive chemical doping of the Bi2Se3 topological insulator. , 2011, Physical review letters.

[12]  W. Duan,et al.  Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first-principles study. , 2011, Physical review letters.

[13]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[14]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[15]  Xi Dai,et al.  Topological insulators in Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface , 2009 .

[16]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[17]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[18]  V. Scarola,et al.  Robustness of topologically protected surface states in layering of Bi2Te3 thin films. , 2010, Physical review letters.

[19]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[20]  G. Bihlmayer,et al.  Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3. , 2011, Physical review letters.

[21]  H. Namatame,et al.  Spin-polarized semiconductor surface states localized in subsurface layers , 2010 .

[22]  Steven G. Louie,et al.  Spin polarization and transport of surface states in the topological insulators Bi$_2$Se$_3$ and Bi$_2$Te$_3$ from first principles , 2011 .

[23]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[24]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[25]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[26]  F. Freimuth,et al.  Localized edge states in two-dimensional topological insulators: Ultrathin Bi films , 2010, 1005.3912.

[27]  K. Kern,et al.  Giant spin splitting through surface alloying. , 2007, Physical review letters.

[28]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[29]  Q. Xue,et al.  Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy , 2010, 1007.0809.

[30]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[31]  J. E. Moore,et al.  Exciton condensation and charge fractionalization in a topological insulator film. , 2009, Physical review letters.

[32]  T. Fukushima,et al.  Quantum Wells Quantum Spin Hall Effect and Topological Phase Transition in HgTe , 2014 .

[33]  R. Hatch,et al.  Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. , 2011, Physical review letters.

[34]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[35]  G. Bihlmayer,et al.  Quantum-well-induced giant spin-orbit splitting. , 2010, Physical review letters.

[36]  Gustav Bihlmayer,et al.  First-principles investigation of structural and electronic properties of ultrathin Bi films , 2008 .

[37]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[38]  Xi Dai,et al.  Crossover of the three-dimensional topological insulator Bi 2 Se 3 to the two-dimensional limit , 2010 .

[39]  A. Damascelli,et al.  Rashba spin-splitting control at the surface of the topological insulator Bi2Se3. , 2011, Physical review letters.

[40]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[41]  S. Blügel,et al.  Interfacing 2 D and 3 D Topological Insulators : Bi ( 111 ) Bilayer on Bi 2 Te , 2011 .