Confirmation of novel type 1 diabetes risk loci in families

[1]  H. Hakonarson,et al.  In silico replication of the genome-wide association results of the Type 1 Diabetes Genetics Consortium. , 2010, Human molecular genetics.

[2]  D. Clayton,et al.  Sex chromosomes and genetic association studies , 2009, Genome Medicine.

[3]  D. Clayton,et al.  The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes , 2009, Nature Genetics.

[4]  Matthew Hardy,et al.  Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource , 2009, Nature Genetics.

[5]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[6]  D. Clayton,et al.  A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region , 2006, Nature Genetics.

[7]  J. Todd,et al.  Comparison of population‐ and family‐based methods for genetic association analysis in the presence of interacting loci , 2005, Genetic epidemiology.

[8]  C R Weinberg,et al.  Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. , 1999, American journal of human genetics.

[9]  H. Barnard,et al.  The Children's Hospital, Los Angeles , 1915 .

[10]  Hospital for Sick Children , 1859 .

[11]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[12]  D. Clayton,et al.  A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. , 2002, American journal of human genetics.

[13]  J. Webb The Greenville Hospital System. , 1986, Journal of the South Carolina Medical Association.

[14]  J. A. Bigler The Children's Memorial Hospital , 1950 .