Solid-State Dewetting of Thin Films

Solid films are usually metastable or unstable in the as-deposited state, and they will dewet or agglomerate to form islands when heated to sufficiently high temperatures. This process is driven by surface energy minimization and can occur via surface diffusion well below a film's melting temperature, especially when the film is very thin. Dewetting during processing of films for use in micro- and nanosystems is often undesirable, and means of avoiding dewetting are important in this context. However, dewetting can also be useful in making arrays of nanoscale particles for electronic and photonic devices and for catalyzing growth of nanotubes and nanowires. Templating of dewetting using patterned surface topography or prepatterning of films can be used to create ordered arrays of particles and complex patterns of partially dewetted structures. Studies of dewetting can also provide fundamental new insight into the effects of surface energy anisotropy and facets on shape evolution.

[1]  Yasuhiko Ishikawa,et al.  Pattern-induced alignment of silicon islands on buried oxide layer of silicon-on-insulator structure , 2003 .

[2]  Bischof,et al.  Spinodal dewetting in liquid crystal and liquid metal films , 1998, Science.

[3]  K. Lücke,et al.  A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities , 1957 .

[4]  C. Thompson Structure Evolution During Processing of Polycrystalline Films , 2000 .

[5]  Carl V. Thompson,et al.  Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films , 2010 .

[6]  H. Sunamura,et al.  Observation of lateral confinement effect in Ge quantum wires self‐aligned at step edges on Si(100) , 1996 .

[7]  W. Tiller,et al.  Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion , 1972 .

[8]  J. Robertson,et al.  Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties , 2007 .

[9]  David J. Srolovitz,et al.  ON THE STABILITY OF SURFACES OF STRESSED SOLIDS , 1989 .

[10]  Jongpil Ye Solid-state dewetting of continuous and patterned single crystal Ni thin films , 2011 .

[11]  Samuel A. Safran,et al.  Capillary instabilities in thin films. I. Energetics , 1986 .

[12]  Ravi M. Todi,et al.  Comparison of the agglomeration behavior of thin metallic films on SiO2 , 2005 .

[13]  W. Mullins Theory of Thermal Grooving , 1957 .

[14]  Erwan Dornel,et al.  Surface diffusion dewetting of thin solid films: Numerical method and application to Si/SiO 2 , 2006 .

[15]  M. Toimil-Molares,et al.  Morphological evolution of Au nanowires controlled by Rayleigh instability , 2006 .

[16]  Carl V. Thompson,et al.  Capillary instabilities in thin, continuous films , 1992 .

[17]  F. Génin,et al.  Capillary instabilities in polycrystalline metallic foils: Experimental observations of thermal pitting in nickel , 1994 .

[18]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[19]  P. Voorhees,et al.  Self-organization of quantum dots in epitaxially strained solid films. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  E. Wang,et al.  Nanocrystal formation and faceting instability in Al(110) homoepitaxy: true upward adatom diffusion at step edges and island corners. , 2003, Physical review letters.

[21]  C. B. Carter,et al.  Nanopatterning by solid-state dewetting on reconstructed ceramic surfaces , 2009 .

[22]  Carl V. Thompson,et al.  The thickness dependence of the flow stress of capped and uncapped polycrystalline Ag thin films , 1998 .

[23]  J. Janek,et al.  Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates , 2010 .

[24]  Carl V. Thompson,et al.  Solid-state dewetting of patterned thin films , 2009 .

[25]  Katharine Gurski,et al.  The effect of anisotropic surface energy on the Rayleigh instability , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  J. Blakely,et al.  The effect of impurity adsorption on the surface energy and surface self diffusion in nickel , 1961 .

[27]  J. Schweitz,et al.  Hole formation in thin aluminium films under controlled variation of strain and temperature , 1991 .

[28]  Joong-Keun Park,et al.  Stability of the grain configurations of thin films—A model for agglomeration , 1997 .

[29]  János Mizsei,et al.  Activating technology of SnO2 layers by metal particles from ultrathin metal films , 1993 .

[30]  O Pierre-Louis,et al.  Anisotropy and coarsening in the instability of solid dewetting fronts. , 2011, Physical review letters.

[31]  Henry I. Smith,et al.  Graphoepitaxy of Ge on SiO2 by solid‐state surface‐energy‐driven grain growth , 1984 .

[32]  W. W. Mullins,et al.  The effect of thermal grooving on grain boundary motion , 1958 .

[33]  M. T. Plateau XXXVII. On the recent theories of the constitution of jets of liquid issuing from circular orifices , 1856 .

[34]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[35]  Carl V. Thompson,et al.  Simulation of thin film grain structures—I. Grain growth stagnation , 1990 .

[36]  J. Daillant,et al.  Drying of solids wetted by thin liquid films , 1990 .

[37]  V. Senez,et al.  Formation of silicon islands on a silicon on insulator substrate upon thermal annealing , 2000 .

[38]  P. S. Sahni,et al.  Computer simulation of grain growth-III. Influence of a particle dispersion , 1984 .

[39]  C. Thompson,et al.  Solid-state dewetting for ordered arrays of crystallographically oriented metal particles , 2005 .

[40]  Michael L. Simpson,et al.  Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth , 2007 .

[41]  Ralph Spolenak,et al.  Microstructure evolution during dewetting in thin Au films , 2010 .

[42]  Y. S. Choi,et al.  Mechanisms of thermally induced dewetting of ultrathin silicon-on-insulator , 2006 .

[43]  F. Hudda,et al.  Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten , 1966 .

[44]  D. W. Hoffman,et al.  Stress-related effects in thin films , 1989 .

[45]  Michael F. Ashby,et al.  Correlations for diffusion constants , 1980 .

[46]  C. Thompson,et al.  Requirements for graphoepitaxial alignment through solid-state dewetting of Au films , 2011 .

[47]  Michael J. Miksis,et al.  The Effect of Contact Lines on the Rayleigh Instability with Anisotropic Surface Energy , 2006, SIAM J. Appl. Math..

[48]  Christophe Detavernier,et al.  High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation , 2005 .

[49]  D. Trimm,et al.  Hillock formation by surface diffusion on thin silver films , 1972 .

[50]  Theory of orientation textures due to surface energy anisotropies , 1988 .

[51]  S. G. Mayr,et al.  Dewetting of Ni and NiAg solid thin films and formation of nanowires on ripple patterned substrates , 2008 .

[52]  F. Spaepen Substrate curvature resulting from the capillary forces of a liquid drop , 1996 .

[53]  Carl V. Thompson,et al.  Anisotropic edge retraction and hole growth during solid-state dewetting of single crystal nickel thin films , 2011 .

[54]  J. Taylor,et al.  Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces , 1995 .

[55]  Volker Schmidt,et al.  Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties , 2009, Advanced materials.

[56]  M. Nagase,et al.  Thermal Agglomeration of Thin Single Crystal Si on SiO2 in Vacuum , 1995 .

[57]  Graphoepitaxy of platinum on Sawtooth profile gratings , 1989 .

[58]  E. Siem,et al.  The equilibrium shape of anisotropic interfacial particles , 2004 .

[59]  David J. Srolovitz,et al.  The Thermodynamics and Kinetics of film agglomeration , 1995 .

[60]  Samuel A. Safran,et al.  Capillary instabilities in thin films. II. Kinetics , 1986 .

[61]  V. Lantto,et al.  In situ AFM, XRD and Resistivity Studies of the Agglomeration of Sputtered Silver Nanolayers , 2001 .

[62]  S. Hackney,et al.  Edge instabilities in thin plates studied by in situ transmission electron microscopy , 1993 .

[63]  C. Jenks,et al.  Kinetics of facile bilayer island formation at low temperature: Ag/NiAl(110). , 2008, Physical review letters.

[64]  J. Colinge Silicon-on-Insulator Technology: Materials to VLSI , 1991 .

[65]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[66]  F. A. Nichols,et al.  Morphological Changes of a Surface of Revolution due to Capillarity‐Induced Surface Diffusion , 1965 .

[67]  Ping Zhang,et al.  Tensile failure by grain thinning in micromachined aluminum thin films , 2003 .

[68]  Robert Weiss,et al.  Spinodal Dewetting of Thin Polymer Films , 1998 .

[69]  J. C. Hamilton,et al.  How metal films de-wet substrates—identifying the kinetic pathways and energetic driving forces , 2009, 0904.1037.

[70]  Praveen Chaudhari,et al.  Hillock growth in thin films , 1974 .

[71]  H. Takeuchi,et al.  Graphoepitaxy of platinum on Sawtooth profile gratings , 1986 .

[72]  Ezra Bussmann,et al.  Dynamics of solid thin-film dewetting in the silicon-on-insulator system , 2011 .

[73]  E. Wang,et al.  Adatom ascending at step edges and faceting on fcc metal (110) surfaces. , 2004, Physical review letters.

[74]  Michael J. Miksis,et al.  Periodic mass shedding of a retracting solid film step , 2000 .

[75]  D. Marshall,et al.  The instability of polycrystalline thin films: Experiment and theory , 1990 .

[76]  Carl V. Thompson,et al.  Grain Growth in Thin Films , 1990 .

[77]  C. Thompson,et al.  Templated Solid‐State Dewetting to Controllably Produce Complex Patterns , 2011, Advanced materials.

[78]  D. Trimm,et al.  Thermal desorption kinetics of chemisorbed gases . Kinetics of hillock and island formation during annealing of thin silver films , 1972 .

[79]  M. Tabe,et al.  Formation and ordering of self-assembled Si islands by ultrahigh vacuum annealing of ultrathin bonded silicon-on-insulator structure , 2000 .

[80]  C. Thompson,et al.  Beading instabilities in thin film lines with bamboo microstructures , 1986 .

[81]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[82]  Richard P. Vinci,et al.  Thermal strain and stress in copper thin films , 1995 .

[83]  Carl V. Thompson,et al.  Capillary instabilities in thin films , 1990 .

[84]  U. Schmid The impact of thermal annealing and adhesion film thickness on the resistivity and the agglomeration behavior of titanium/platinum thin films , 2008 .

[85]  F. Himpsel,et al.  Linear arrays of CaF2 nanostructures on Si , 1999 .

[86]  Robert Sinclair,et al.  Modeling of agglomeration in polycrystalline thin films : application to TiSi2 on a silicon substrate , 1992 .

[87]  Liang Li,et al.  A combined top-down and bottom-up approach for precise placement of metal nanoparticles on silicon. , 2008, Small.

[88]  Harris Wong,et al.  Fingering instability of a retracting solid film edge , 2005 .

[89]  S. H. Davis,et al.  Faceting instability in the presence of wetting interactions: A mechanism for the formation of quantum dots , 2004 .

[90]  Yasuhiko Ishikawa,et al.  Thermal agglomeration of single-crystalline Si layer on buried SiO2 in ultrahigh vacuum , 2002 .

[91]  W. W. Mullins,et al.  Flattening of a Nearly Plane Solid Surface due to Capillarity , 1959 .

[92]  M. Tabe,et al.  Thermal Agglomeration of Ultrathin Silicon-on-Insulator Layers: Crystalline Orientation Dependence , 2008 .

[93]  Dong Wang,et al.  Two-dimensional nanoparticle arrays formed by dewetting of thin gold films deposited on pre-patterned substrates , 2011 .

[94]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[95]  R. Abermann,et al.  Measurements of the intrinsic stress in thin metal films , 1990 .

[96]  T. Chao,et al.  Si Nanocrystal Memory Devices Self-Assembled by In Situ Rapid Thermal Annealing of Ultrathin a -Si on SiO2 , 2007 .

[97]  A. Chame,et al.  Dewetting of a solid monolayer. , 2007, Physical review letters.

[98]  J. Overbeek,et al.  Rupture of thin liquid films due to spontaneous fluctuations in thickness , 1968 .

[99]  Henry I. Smith,et al.  Silicon graphoepitaxy using a strip-heater oven , 1980 .

[100]  W. L Winterbottom,et al.  Equilibrium shape of a small particle in contact with a foreign substrate , 1967 .

[101]  C. Thompson,et al.  Cobalt nanoparticle arrays made by templated solid-state dewetting. , 2009, Small.

[102]  A. W. Groenland,et al.  Stability of thin platinum films implemented in high-temperature microdevices , 2009 .

[103]  Gregorio Bottaro,et al.  Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look , 2006 .

[104]  Stewart,et al.  Spinodal decomposition of a crystal surface. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[105]  W. K. Choi,et al.  Field emission from a large area of vertically-aligned carbon nanofibers with nanoscale tips and controlled spatial geometry , 2010 .

[106]  Carl V. Thompson,et al.  Mechanisms of complex morphological evolution during solid-state dewetting of single-crystal nickel thin films , 2010 .

[107]  A. Munkholm,et al.  A search for strain gradients in gold thin films on substrates using x-ray diffraction , 2000 .

[108]  Takahisa Kato,et al.  Nanoparticle formation in Au thin films by electron-beam-induced dewetting , 2008, Nanotechnology.

[109]  D. Raabe,et al.  Experimental study on the thermal stability of Cr filaments in a Cu–Cr–Ag in situ composite , 2004 .

[110]  Jurgen Michel,et al.  Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration , 2006 .

[111]  Hans Peter Herzig,et al.  Applications of SOI-based optical MEMS , 2002 .

[112]  C. Thompson,et al.  Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. , 2008, Nano letters.

[113]  J. Tersoff,et al.  Competing relaxation mechanisms in strained layers. , 1994, Physical review letters.

[114]  Shi-Li Zhang,et al.  Metal Silicides in CMOS Technology: Past, Present, and Future Trends , 2003 .

[115]  O. Faynot,et al.  Agglomeration control during the selective epitaxial growth of Si raised sources and drains on ultra-thin silicon-on-insulator substrates , 2005 .

[116]  John W. Cahn,et al.  Stability of rods with anisotropic surface free energy , 1979 .