Non-monotonic Poisson Likelihood Maximization

This report summarizes the theory and some main applications of a new non-monotonic algorithm for maximizing a Poisson Likelihood, which for Positron Emission Tomography (PET) is equivalent to minimizing the associated Kullback-Leibler Divergence, and for Transmission Tomography is similar to maximizing the dual of a maximum entropy problem. We call our method non-monotonic maximum likelihood (NMML) and show its application to different problems such as tomography and image restoration. We discuss some theoretical properties such as convergence for our algorithm. Our experimental results indicate that speedups obtained via our non-monotonic methods are substantial.

[1]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[2]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[3]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[4]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[5]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[6]  K. Lange,et al.  EM reconstruction algorithms for emission and transmission tomography. , 1984, Journal of computer assisted tomography.

[7]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[8]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[9]  Ken D. Sauer,et al.  A local update strategy for iterative reconstruction from projections , 1993, IEEE Trans. Signal Process..

[10]  Simon R. Cherry,et al.  Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images , 1994, IEEE Trans. Medical Imaging.

[11]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[12]  S. Manglos,et al.  Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT. , 1995, Physics in medicine and biology.

[13]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[14]  Jeffrey A. Fessler,et al.  Ieee Transactions on Image Processing: to Appear Globally Convergent Algorithms for Maximum a Posteriori Transmission Tomography , 2022 .

[15]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[16]  Alvaro R. De Pierro,et al.  A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography , 1995, IEEE Trans. Medical Imaging.

[17]  Alvaro R. De Pierro,et al.  A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography , 1996, IEEE Trans. Medical Imaging.

[18]  Jeffrey A. Fessler,et al.  Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction , 1997, IEEE Transactions on Medical Imaging.

[19]  Jeffrey A. Fessler,et al.  Accelerated monotonic algorithms for transmission tomography , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[20]  Hakan Erdogan,et al.  Ordered subsets algorithms for transmission tomography. , 1999, Physics in medicine and biology.

[21]  Ariela Sofer,et al.  Interior-point methodology for 3-D PET reconstruction , 2000, IEEE Transactions on Medical Imaging.

[22]  Hwann-Tzong Chen,et al.  Trust-region methods for real-time tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  I Buvat,et al.  Monte Carlo simulations in SPET and PET. , 2002, The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology.

[24]  Hakan Erdogan,et al.  Monotonic algorithms for transmission tomography , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[25]  Robert M. Lewitt,et al.  Overview of methods for image reconstruction from projections in emission computed tomography , 2003, Proc. IEEE.

[26]  Simon K. Warfield,et al.  Normalization of joint image-intensity statistics in MRI using the Kullback-Leibler divergence , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[27]  Alan C. Evans,et al.  PET-SORTEO: a Monte Carlo-based Simulator with high count rate capabilities , 2004, IEEE Transactions on Nuclear Science.

[28]  D. Karlis,et al.  Mixed Poisson Distributions , 2005 .

[29]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[31]  Alfred O. Hero,et al.  Convergent incremental optimization transfer algorithms: application to tomography , 2006, IEEE Transactions on Medical Imaging.

[32]  H. Zaidi,et al.  Advances in PET Image Reconstruction. , 2007, PET clinics.

[33]  Nasser Kehtarnavaz,et al.  Kullback-Leibler Distance Optimization for Non-rigid Registration of Echo-Planar to Structural Magnetic Resonance Brain Images , 2007, 2007 IEEE International Conference on Image Processing.

[34]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[35]  I. Dhillon,et al.  A New Non-monotonic Gradient Projection Method for the Non-negative Least Squares Problem , 2008 .