Non-equilibrium thermodynamic analysis of the transport properties of formed-in-place Zr(IV) hydrous oxide-PAA membranes. II NaCl-water solutions

[1]  H. G. Spencer,et al.  Non-equilibrium thermodynamic analysis of the transport properties of formed-in-place zirconium (IV) hydrous oxide-polyacrylate membranes in lactose-water solutions , 1994 .

[2]  E. Staude,et al.  Charged membranes for low pressure reverse osmosis properties and applications , 1992 .

[3]  W. Kujawski,et al.  Transport of electrolytes across charged membranes. Part IV. Frictional interactions of the neutral and alkaline permeants and the permeability/reflection phenomena☆ , 1991 .

[4]  Robert Rautenbach,et al.  Separation potential of nanofiltration membranes , 1990 .

[5]  W. Pusch,et al.  Chapter 1.4 Measurement techniques of transport through membranes , 1986 .

[6]  K. S. Spiegler,et al.  Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes , 1966 .

[7]  A. Katchalsky,et al.  A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability , 1961, The Journal of general physiology.

[8]  H. G. Spencer,et al.  Ion passages in the hyperfiltration of mixed Co-ion electrolyte solutions by a membrane containing fixed charges , 1988 .

[9]  H. G. Spencer Electrolyte exclusion model for hyperfiltration of electrolyte solutions by charged gel membranes , 1984 .

[10]  P. Meares,et al.  Ion-Exchange Membranes , 1983 .

[11]  O. Kedem,et al.  Description of the transport of solvent and ions through membranes in terms of differential coefficients. Part 1.—Phenomenological characterization of flows , 1961 .

[12]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.