High-z galaxies simulations: a benchmark for Global-MCAO

Global-Multi Conjugate Adaptive Optics (GMCAO) can be a reliable approach for the new generation of Extremely Large Telescopes (ELTs) to address the issue of the sky coverage. It is based on the idea of using the largest possible technical field-of-view, to maximize the chance to find suitable reference stars. To prove that such innovative concept is robust and can be successfully used for studying faint objects, we build mock images of high-z galaxies and analyze them as if they were real and observed with an ELT that benefits of GMCAO. The results we obtained from the analysis of these images claim that this kind of method can be well used for extragalactic deep surveys, a key instrument that next generation telescopes will use to understand the origin and the evolution of galaxies.

[1]  P. Saracco,et al.  Spatially resolved colours and stellar population properties in early-type galaxies at z ∼ 1.5 , 2012, 1207.2295.

[2]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[3]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[4]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[5]  C. Conselice,et al.  Strong size evolution of the most massive galaxies since z~2 , 2007, 0709.0621.

[6]  Roberto Ragazzoni,et al.  How to break the FoV versus thickness rule in MCAO , 2010 .

[7]  Roberto Ragazzoni,et al.  GMCAO for E-ELT: a feasibility study , 2015 .

[8]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[9]  H. Maître,et al.  Estimation of the adaptive optics long-exposure point-spread function using control loop data , 1997 .

[10]  Emiliano Diolaiti,et al.  Handling a highly structured and spatially variable Point Spread Function in AO images , 2011 .

[11]  R. Bender,et al.  The Kormendy relation of massive elliptical galaxies at z ~ 1.5: evidence for size evolution , 2006, astro-ph/0610241.

[12]  S. White,et al.  Simulations of merging galaxies. , 1978 .

[13]  Richard B. Larson,et al.  Dynamical models for the formation and evolution of spherical galaxies , 1973 .

[14]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[15]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[16]  K. Freeman On the disks of spiral and SO Galaxies , 1970 .

[17]  Mark Dickinson,et al.  Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging , 2008, 0807.4141.

[18]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[19]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[20]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[21]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .

[22]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[23]  D. M. Alexander,et al.  The Population of BzK-selected ULIRGs at z ~ 2 , 2005 .

[24]  M. Uslenghi,et al.  Probing the nuclear star cluster of galaxies with extremely large telescopes , 2014, 1406.7818.

[25]  S. Trippe,et al.  MICADO: the E-ELT adaptive optics imaging camera , 2010, Astronomical Telescopes + Instrumentation.

[26]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .

[27]  Eric Tessier Analysis and calibration of natural guide star adaptive optics data , 1995, Optics & Photonics.