Theoretical investigation of carbon nets and molecules

Publisher Summary This chapter discusses systems that are formed from carbon atoms. Adopted as first classification are the dichotomy infinite/finite systems—that is, macromolecule versus molecule; as a second criterion, systems are discussed in terms of hybridization, using the well-known types sp, sp 2 , sp 3 although these are only first approximations for dicoordinated, tricoordinated,and tetracoordinated atoms, because the exact hybridization is determined by the valence angles. The chapter explains the infinite planar nets of sp 2 -hybridized carbon atoms. Graphite's delocalization is associated with high electrical and thermal conductivity within the graphene plane. Single crystals have conductivities about 200 times higher within the molecular planes than across them. The strong anisotropy, because of covalent bonding within the honeycomb lattice and to Van der Waals forces in the orthogonal direction, leads to linear compressibilities 104–105 times larger in the latter direction. The opacity and black color of graphite are because of the large aromatic chromophore. Graphite is the thermodynamically favored allotropic form of elemental carbon, so it is possible to gradually convert diamond into graphite on heating at 1000° at normal pressure in the absence of air. The other planar infinite lattices and tridimensional infinite lattices with sp 2 -hybridized carbon atoms are discussed in the chapter. There are details of diamond's three-dimensional infinite network, other systems with sp 3 -hybridized carbon atoms, and holes bordered by heteroatoms within the diamond lattice. There is discussion on infinite nets with both sp 2 - and sp 3 -hybridized carbon atoms—the local defects in the graphite lattice and the diamond lattice. In the chapter, systems with regularly alternating sp 2 /sp 3 -hybridized carbon atoms are also discussed. The chapter describes the infinite chains of sp-hybridized carbon atoms, molecules with sp 2 -hybridized carbon atoms—fullerenes, nanotubes and capsules, carbon cages and nanotubes including oxygen, nitrogen, or boron heteroatoms—and molecules with sp- and sp 2 -hybridized carbon atoms.

[1]  Douglas J. Klein,et al.  Graph Invariants for Fullerenes , 1995, J. Chem. Inf. Comput. Sci..

[2]  H. Kroto,et al.  C60, fullerenes, giant fullerenes and soot , 1990 .

[3]  Liu,et al.  Structural properties of a three-dimensional all-sp2 phase of carbon. , 1991, Physical review. B, Condensed matter.

[4]  Biswas,et al.  Stability and electronic properties of complex structures of silicon and carbon under pressure: Density-functional calculations. , 1987, Physical review. B, Condensed matter.

[5]  D. Manolopoulos,et al.  Theoretical studies of the fullerenes: C34 to C70 , 1991 .

[6]  Peter W Stephens Physics and Chemistry of Fullerenes , 1993 .

[7]  Douglas J. Klein,et al.  Elemental carbon isomerism , 1994 .

[8]  Harold W. Kroto C60: BUCKMINSTERFULLERENE, THE CELESTIAL SPHERE THAT FELL TO EARTH , 1992 .

[9]  R Hoffmann,et al.  Hypothetical strain-free oligoradicals. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Heggie Interstitial string model for defective graphites , 1992 .

[11]  M. Prato,et al.  Addition of azides to fullerene C60: synthesis of azafulleroids , 1993 .

[12]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[13]  T. Ebbesen,et al.  Capillarity and Wetting of Carbon Nanotubes , 1994, Science.

[14]  Hugh Aldersey-Williams,et al.  The most beautiful molecule , 1994 .

[15]  Milan Randic,et al.  A graph theoretical approach to conjugation and resonance energies of hydrocarbons , 1977 .

[16]  R. Hoffmann,et al.  The graphite-to-diamond transformation , 1984 .

[17]  Kenneth M. Merz,et al.  3,4-connected carbon nets: through-space and through-bond interactions in the solid state , 1987 .

[18]  Douglas J. Klein,et al.  CONJUGATED-CIRCUIT COMPUTATIONS ON TWO-DIMENSIONAL CARBON NETWORKS , 1994 .

[19]  András Schubert,et al.  Fullerene Research 1985-1993: A Computer-Generated Cross-Indexed Bibliography of the Journal Literature , 1995 .

[20]  R C DeVries,et al.  Synthesis of Diamond Under Metastable Conditions , 1987 .

[21]  H. Karfunkel,et al.  New hypothetical carbon allotropes of remarkable stability estimated by modified neglect of diatomic overlap solid-state self-consistent field computations , 1992 .

[22]  Liu,et al.  Theoretical study of a hypothetical metallic phase of carbon. , 1992, Physical review. B, Condensed matter.

[23]  R. Car,et al.  A microscopic model for surface-induced diamond-to-graphite transitions , 1996, Nature.

[24]  D. Klein,et al.  HOLES IN DIAMOND OR CARBON NITRIDE LATTICES , 1996 .

[25]  D. Klein,et al.  Covalently-Bonded “Onion Type” Double Fullerenic Carbon Cages , 1996 .

[26]  N. Trinajstic,et al.  Stability of fullerenes with four-membered rings , 1995 .

[27]  H. Kroto,et al.  Space, Stars, C60, and Soot , 1988, Science.

[28]  Patrick W. Fowler,et al.  Possible symmetries of fullerene structures , 1993 .

[29]  W. C. Herndon Structure-Resonance Theory. A Review of Applications to π -Hydrocarbon Systems , 1980 .

[30]  R. Smalley,et al.  Formation of Fullerides and Fullerene-Based Heterostructures , 1991, Science.

[31]  Y. Li,et al.  All-Carbon Molecules: Evidence for the Generation of Cyclo[18]carbon from a Stable Organic Precursor , 1989, Science.

[32]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[33]  P. Decarli,et al.  Formation of Diamond by Explosive Shock , 1961, Science.

[34]  Roger Taylor,et al.  C60, C70, C76, C78 and C84: numbering, π-bond order calculations and addition pattern considerations , 1993 .

[35]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[36]  A. M. Sladkov Aleksandr Vasil'evich Fokin , 1982 .

[37]  R. Johnston,et al.  Superdense carbon, C8: supercubane or analog of .gamma.-silicon? , 1989 .

[38]  A. Balaban,et al.  CARBENIUM‐CARBONIUM STRUCTURES, H2C+‐CH4+, FOR THE ETHANE DICATION , 1982 .

[39]  Ivan V. Stankevich,et al.  The Structural Chemistry of Crystalline Carbon: Geometry, Stability, and Electronic Spectrum , 1984 .

[40]  Pw Fowler,et al.  How unusual is C60? Magic numbers for carbon clusters , 1986 .

[41]  F. Bundy Diamond Synthesis with Non-conventional Catalyst-solvents , 1973, Nature.

[42]  F. Bundy The P, T phase and reaction diagram for elemental carbon, 1979 , 1980 .

[43]  J. Burdett Some structural problems examined using the method of moments , 1987 .

[44]  Robert A. Davidson,et al.  Spectral analysis of graphs by cyclic automorphism subgroups , 1981 .

[45]  J. Burdett,et al.  Moments method and elemental structures , 1985 .

[46]  Yang Wang,et al.  Fullereneynes: a new family of porous fullerenes , 1993 .

[47]  P. Fowler,et al.  A fullerene without a spiral , 1993 .

[48]  A. Hirsch Chemistry of Fullerenes , 1994 .

[49]  T. Ichihashi,et al.  Distribution of pentagons and shapes in carbon nano-tubes and nano-particles , 1993 .

[50]  Douglas J. Klein,et al.  Diamond-graphite hybrids , 1994 .

[51]  Alan L. Goodson,et al.  Numbering and Naming of Fullerenes by Chemical Abstracts Service , 1995, J. Chem. Inf. Comput. Sci..

[52]  Alexandru T. Balaban,et al.  Carbon and its nets , 1989 .

[53]  E. Anders,et al.  Carbynes: Carriers of Primordial Noble Gases in Meteorites , 1980, Science.

[54]  N. Trinajstic Chemical Graph Theory , 1992 .

[55]  A. G. Whittaker Carbon: A New View of Its High-Temperature Behavior , 1978, Science.

[56]  Topological control of the structures of molecules and solids , 1988 .

[57]  W. C. Herndon Resonance energies of aromatic hydrocarbons. Quantitative test of resonance theory , 1973 .

[58]  J. R. Bowser,et al.  MNDO Study of Boron-Nitrogen Analogues of Buckminsterfullerene , 1992 .

[59]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[60]  R. Biswas,et al.  Complex tetrahedral structures of silicon and carbon under pressure , 1984 .

[61]  J. C. Jamieson,et al.  Formation of an Amorphous Form of Quartz under Shock Conditions , 1959 .

[62]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[63]  Ying-Duo Gao,et al.  Fullerenes with four-membered rings , 1993 .

[64]  Roald Hoffmann,et al.  Hypothetical metallic allotrope of carbon , 1983 .

[65]  E. Ōsawa,et al.  (SiC)60' an Indealized Inverse Superatom? , 1995 .

[66]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[67]  Klaus Sattler,et al.  Observation of fullerene cones , 1994 .

[68]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[69]  R. H. Wentorf Cubic Form of Boron Nitride , 1957 .

[70]  Adams,et al.  Predicted new low energy forms of carbon. , 1992, Physical review letters.

[71]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[72]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[73]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[74]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[75]  M. Randic Aromaticity and conjugation , 1977 .

[76]  Nenad Trinajstic,et al.  Pyracylene Rearrangement Classes of Fullerene Isomers , 1993, Comput. Chem..

[77]  I. Stankevich,et al.  The fullerenes — new allotropic forms of carbon: molecular and electronic structure, and chemical properties , 1993 .

[78]  Jerry Ray Dias Enumeration of graphite carbon-bond-network defects having ring sizes ranging from 3 to 9 , 1984 .

[79]  Jerzy Cioslowski,et al.  Electronic Structure Calculations on Fullerenes and Their Derivatives , 1995 .

[80]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[81]  Cohen,et al.  Calculation of bulk moduli of diamond and zinc-blende solids. , 1985, Physical review. B, Condensed matter.

[82]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[83]  Douglas J. Klein,et al.  GENERALIZATIONS OF THE STONE-WALES REARRANGEMENT FOR CAGE COMPOUNDS, INCLUDING FULLERENES , 1996 .

[84]  F. Wudl The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids , 1992 .

[85]  Douglas J. Klein,et al.  Nomenclature and Coding of Fullerenes , 1995, J. Chem. Inf. Comput. Sci..

[86]  Douglas J. Klein,et al.  W. R. Hamilton:: His Genius, His Circuits, and the IUPAC Nomenclature for Fulleranes , 1995 .