Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism--mathematical models and experimental observations.

Planktonic blooms and its control is an intriguing problem in ecology. To investigate the oscillatory successions of blooms, three simple phytoplankton-zooplankton systems are proposed. It is observed that if the uptake function is linear and the process of toxin liberation is instantaneous, the oscillatory nature of blooms is not observed. On the other hand, periodic planktonic blooms are observed when toxin liberation process follows discrete time variation. The bloom phenomena described by this mechanism can be controlled through toxin producing phytoplankton (TPP). Introducing environmental fluctuation in the system, a critical value of time delay in terms of correlation time of the fluctuation is worked out. We observed from our mathematical analysis, numerical simulation and field observation that TPP and control of the rapidity of environmental fluctuation are key factors for the termination of planktonic blooms.

[1]  D. Cushing A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified , 1989 .

[2]  P. Nival,et al.  A pelagic ecosystem model simulating production and sedimentation of biogenic particles: role of salps and copepods , 1988 .

[3]  K. Cooke,et al.  Discrete delay, distributed delay and stability switches , 1982 .

[4]  Stephen J. Hawkins,et al.  Evidence for eutrophication of the Irish Sea over four decades , 1998 .

[5]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[6]  E. Carpenter,et al.  Novel Phytoplankton Blooms , 1989, Coastal and Estuarine Studies.

[7]  J. Pitchford,et al.  Intratrophic predation in simple predator-prey models , 1998 .

[8]  G. Underwood,et al.  Primary Production by Phytoplankton and Microphytobenthos in Estuaries , 1999 .

[9]  V. A. Ryabchenko,et al.  Chaotic behaviour of an ocean ecosystem model under seasonal external forcing , 1997 .

[10]  R. Sarkar,et al.  A delay differential equation model on harmful algal blooms in the presence of toxic substances. , 2002, IMA journal of mathematics applied in medicine and biology.

[11]  T. L. Saaty Modern nonlinear equations , 1981 .

[12]  P. Mazur On the theory of brownian motion , 1959 .

[13]  J. Nejstgaard,et al.  Repression of copepod feeding and fecundity by the toxic haptophyte Prymnesium patelliferum , 1996 .

[14]  Robert M. May,et al.  Stability in Randomly Fluctuating Versus Deterministic Environments , 1973, The American Naturalist.

[15]  J. Truscott Environmental forcing of simple plankton models , 1995 .

[16]  John Brindley,et al.  Ocean plankton populations as excitable media , 1994 .

[17]  T. O. Carroll,et al.  Modeling the role of viral disease in recurrent phytoplankton blooms , 1994 .

[18]  G. Evans,et al.  Towards a model of ocean biogeochemical processes , 1993 .

[19]  C. J. Stone,et al.  Introduction to Stochastic Processes , 1972 .

[20]  Donald M. Anderson,et al.  Toxic Marine Phytoplankton , 1987 .

[21]  Torkel Gissel Nielsen,et al.  Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community , 1990 .

[22]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[23]  J. J. Gilbert,et al.  Variation in Herbivore Response to Chemical Defenses: Zooplankton Foraging on Toxic Cyanobacteria , 1992 .

[24]  P. D. N. Srinivasu,et al.  Pelicans at risk in Salton Sea—an eco-epidemiological model-II , 2001 .

[25]  T. Jickells,et al.  Nutrient Biogeochemistry of the Coastal Zone , 1998, Science.

[26]  John H. Steele,et al.  The Significance of Interannual Variability , 1993 .

[27]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[28]  J. Egge,et al.  Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in different N : P ratios , 1994 .

[29]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[30]  S Mandal,et al.  Toxin-producing plankton may act as a biological control for planktonic blooms--field study and mathematical modelling. , 2002, Journal of theoretical biology.

[31]  S. Uye Impact of copepod grazing on the red-tide flagellate Chattonella antiqua , 1986 .

[32]  Engel G. Vrieling,et al.  TOXIC PHYTOPLANKTON BLOOMS IN THE SEA , 1993 .

[33]  N. Wax,et al.  Selected Papers on Noise and Stochastic Processes , 1955 .

[34]  John H. Steele,et al.  A comparison of terrestrial and marine ecological systems , 1985, Nature.

[35]  E. Odum Fundamentals of ecology , 1972 .

[36]  J. Brindley,et al.  Patchiness in plankton populations , 1997 .

[37]  A. Longtin,et al.  Small delay approximation of stochastic delay differential equations , 1999 .

[38]  J. Ives,et al.  Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates , 1987 .

[39]  F. Kestner,et al.  Estuaries : a physical introduction , 1974 .

[40]  P. Hartman Ordinary Differential Equations , 1965 .

[41]  W. Gieskes,et al.  Continuous plankton records: Changes in the plankton of the North Sea and its eutrophic southern bight from 1948 to 1975 , 1977 .

[42]  Andrew M. Edwards,et al.  Oscillatory behaviour in a three-component plankton population model , 1996 .

[43]  R. Sarkar,et al.  Effects of environmental fluctuation on an eco‐epidemiological model of the Salton sea , 2001 .

[44]  D. Sarno,et al.  Seasonal dynamics in the abundance of Micromonas pusilla (Prasinophyceae) and its viruses in the Gulf of Naples (Mediterranean Sea) , 1999 .

[45]  M. Trimmer,et al.  Nutrients in Estuaries , 1999 .

[46]  Katherine Richardson,et al.  Primary production in the Kattegat: Past and present , 1995 .

[47]  T. C. Turlings,et al.  Parasitoids may determine plant fitness--a mathematical model based on experimental data. , 2001, Journal of theoretical biology.

[48]  J. Steele,et al.  Modeling long-term fluctuations in fish stocks. , 1984, Science.

[49]  V. A. Ryabchenko,et al.  What causes short-term oscillations in ecosystem models of the ocean mixed layer? , 1997 .

[50]  A. M. Edwards,et al.  Zooplankton mortality and the dynamical behaviour of plankton population models , 1999, Bulletin of mathematical biology.

[51]  Thomas Kiørboe,et al.  Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs , 1993 .