Efficient Computation of Multivariable Transfer Function Dominant Poles Using Subspace Acceleration

This paper describes a new algorithm to compute the dominant poles of a high-order multiple-input multiple-output (MIMO) transfer function. The algorithm, called the Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP), is able to compute the full set of dominant poles efficiently. SAMDP can be used to produce good modal equivalents automatically. The general algorithm is robust, applicable to both square and nonsquare transfer function matrices, and can easily be tuned to suit different practical system needs

[1]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[2]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[3]  Thomas Kailath,et al.  Linear Systems , 1980 .

[4]  Rajnikant V. Patel,et al.  Multivariable System Theory and Design , 1981 .

[5]  Paul Van Dooren,et al.  Computation of zeros of linear multivariable systems , 1980, Autom..

[6]  John F. Dorsey,et al.  Reducing the order of very large power system models , 1988 .

[7]  Raphael T. Haftka,et al.  Derivatives of eigenvalues and eigenvectors of a general complex matrix , 1988 .

[8]  Nelson Martins,et al.  Efficient methods for finding transfer function zeros of power systems. Discussion , 1991 .

[9]  Hartmut Logemann,et al.  Multivariable feedback design : J. M. Maciejowski , 1991, Autom..

[10]  N. Martins,et al.  Efficient methods for finding transfer function zeros of power systems , 1991, [Proceedings] Conference Papers 1991 Power Industry Computer Application Conference.

[11]  Y Saad,et al.  Numerical methods for large eigenvalue problems : theory and algorithms , 1992 .

[12]  Joshua R. Smith,et al.  Transfer function identification in power system applications , 1993 .

[13]  L. A. Aguirre Quantitative measure of modal dominance for continuous systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[14]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[15]  Andras Varga,et al.  Enhanced Modal Approach for Model Reduction , 1995 .

[16]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[17]  Joe H. Chow,et al.  Power system reduction to simplify the design of damping controllers for interarea oscillations , 1996 .

[18]  Nelson Martins,et al.  Computing dominant poles of power system transfer functions , 1996 .

[19]  B. Pal,et al.  Robust damping of inter-area oscillations in power systems with superconducting magnetic energy storage devices , 1999 .

[20]  Shaopeng Wang,et al.  Power system damping controller design-using multiple input signals , 2000 .

[21]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[22]  N. Martins,et al.  Computing Dominant Poles of Power System Multivariable Transfer Functions , 2002, IEEE Power Engineering Review.

[23]  Reza Iravani,et al.  Order reduction of the dynamic model of a linear weakly periodic system Part I: general methodology , 2004 .

[24]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[25]  A. de Castro,et al.  Utilizing transfer function modal equivalents of low-order for the design of power oscillation damping controllers in large power systems , 2005, IEEE Power Engineering Society General Meeting, 2005.

[26]  Athanasios C. Antoulas,et al.  An overview of approximation methods for large-scale dynamical systems , 2005, Annu. Rev. Control..

[27]  M.A. Pai,et al.  Model reduction in power systems using Krylov subspace methods , 2005, IEEE Transactions on Power Systems.

[28]  N. Martins,et al.  Efficient computation of transfer function dominant poles using subspace acceleration , 2006, IEEE Transactions on Power Systems.