Multiobjective Framework for Model-based Design of Experiments to Improve Parameter Precision and Minimize Parameter Correlation
暂无分享,去创建一个
Gade Pandu Rangaiah | Lakshminarayanan Samavedham | G. P. Rangaiah | L. Samavedham | V. Maheshwari | Vaibhav Maheshwari | Vaibhav Maheshwari
[1] M. Nihtilä,et al. Practical identifiability of growth and substrate consumption models , 1977, Biotechnology and bioengineering.
[2] David W. Bacon,et al. Prospects for reducing correlations among parameter estimates in kinetic models , 1978 .
[3] Michael L. Brisk,et al. Sequential experimental design for precise parameter estimation. 2. Design criteria , 1985 .
[4] Michael L. Brisk,et al. Sequential experimental design for precise parameter estimation. 1. Use of reparameterization , 1985 .
[5] W. R. Witkowski,et al. Approximation of parameter uncertainty in nonlinear optimization-based parameter estimation schemes , 1993 .
[6] Andrea P. Reverberi,et al. New Procedure for Optimal Design of Sequential Experiments in Kinetic Models , 1994 .
[7] Yuji Naka,et al. Mathematical Problems in Fitting Kinetic Models—Some New Perspectives , 1999 .
[8] Sandro Macchietto,et al. Statistical tools for optimal dynamic model building , 2000 .
[9] Claudio Cobelli,et al. Models of subcutaneous insulin kinetics. A critical review , 2000, Comput. Methods Programs Biomed..
[10] K J Versyck,et al. On the design of optimal dynamic experiments for parameter estimation of a Ratkowsky-type growth kinetics at suboptimal temperatures. , 2000, International journal of food microbiology.
[11] Sandro Macchietto,et al. Designing robust optimal dynamic experiments , 2002 .
[12] Jan Van Impe,et al. Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach , 2002 .
[13] Kwang-Hyun Cho,et al. Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNFα-Mediated NF-κ B Signal Transduction Pathway , 2003, Simul..
[14] Michel Cabassud,et al. Precise parameter estimation for chemical batch reactions in heterogeneous medium , 2003 .
[15] R. Hovorka,et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. , 2004, Physiological measurement.
[16] Richard D. Braatz,et al. First-principles and direct design approaches for the control of pharmaceutical crystallization , 2005 .
[17] Maria Rodriguez-Fernandez,et al. A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.
[18] Bernd Hitzmann,et al. Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix. , 2006, Journal of theoretical biology.
[19] Eva Balsa-Canto,et al. Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation , 2007 .
[20] Sandro Macchietto,et al. Model-Based Design of Parallel Experiments , 2007 .
[21] Sandro Macchietto,et al. Novel anticorrelation criteria for model‐based experiment design: Theory and formulations , 2008 .
[22] Sandro Macchietto,et al. Novel anticorrelation criteria for design of experiments: Algorithm and application , 2008 .
[23] Sandro Macchietto,et al. Model-based design of experiments for parameter precision: State of the art , 2008 .
[24] Sandro Macchietto,et al. Anti-Correlation Approach to Model-Based Experiment Design: Application to a Biodiesel Production Process , 2008 .
[25] Thomas F. Edgar,et al. PCA Combined Model-Based Design of Experiments (DOE) Criteria for Differential and Algebraic System Parameter Estimation , 2008 .
[26] Federico Galvanin. Optimal design of clinical tests for the identification of physiological models of type 1 diabetes mellitus in the presence of model uncertainty , 2009 .
[27] Cheng-Liang Chen,et al. Model-Based Insulin Therapy Scheduling: A Mixed-Integer Nonlinear Dynamic Optimization Approach , 2009 .
[28] Massimiliano Barolo,et al. A backoff strategy for model‐based experiment design under parametric uncertainty , 2009 .
[29] G. P. Rangaiah,et al. Review and Analysis of Blood Glucose (BG) Models for Type 1 Diabetic Patients , 2011 .
[30] Kim B. McAuley,et al. Mathematical modelling of chemical processes—obtaining the best model predictions and parameter estimates using identifiability and estimability procedures , 2012 .
[31] Filip Logist,et al. Optimal experiment design for dynamic bioprocesses: A multi-objective approach , 2012 .