Radiative neutron capture: Hauser Feshbach vs.statistical resonances
暂无分享,去创建一个
Arjan J. Koning | Dimitri Rochman | Hakim Ferroukhi | Stéphane Goriely | A. Koning | D. Rochman | S. Goriely | H. Ferroukhi
[1] S. Hilaire,et al. Large-scale deformed quasiparticle random-phase approximation calculations of the γ -ray strength function using the Gogny force , 2016, 1607.08483.
[2] S. Goriely,et al. Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force , 2016 .
[3] A. Koning,et al. Systematic study of neutron capture including the compound, pre-equilibrium, and direct mechanisms , 2014 .
[4] S. Goriely,et al. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient , 2013 .
[5] A. Koning,et al. Temperature-dependent combinatorial level densities with the D1M Gogny force , 2012 .
[6] Arjan J. Koning,et al. Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .
[7] S. Goriely,et al. Systematic study of direct neutron capture , 2012 .
[8] Arjan J. Koning,et al. Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method , 2008 .
[9] Arjan J. Koning,et al. Global and local level density models , 2008 .
[10] A. J. Koning,et al. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications , 2008, 0806.2239.
[11] K. Takahashi,et al. The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries , 2007, 0705.4512.
[12] Arjan J. Koning,et al. Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications , 2006 .
[13] S. Goriely,et al. Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas; VI: Weakened pairing , 2006 .
[14] P. Rullhusen,et al. Status of the JEFF Nuclear Data Library , 2005 .
[15] S. Goriely,et al. Microscopic HFB+QRPA predictions of dipole strength for astrophysics applications , 2003, nucl-th/0306005.
[16] S. Goriely,et al. Improved microscopic nuclear level densities , 2003 .
[17] Arjan J. Koning,et al. Local and global nucleon optical models from 1 keV to 200 MeV , 2003 .
[18] P. Descouvemont. Cluster models in nuclear astrophysics , 2002 .
[19] S. Goriely,et al. Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section , 2002, nucl-th/0203074.
[20] E. Bauge,et al. Lane consistent, semimicroscopic nucleon nucleus optical model , 2001 .
[21] S. Goriely. Direct neutron captures and the r-process nucleosynthesis , 1997 .
[22] Uhl,et al. Test of gamma-ray strength functions in nuclear reaction model calculations. , 1990, Physical review. C, Nuclear physics.
[23] C. Rolfs. Spectroscopic factors from radiative capture reactions , 1973 .
[24] P. Moldauer. STATISTICAL THEORY OF NUCLEAR COLLISION CROSS SECTIONS , 1964 .
[25] P. Moldauer. AVERAGE RESONANCE PARAMETERS AND THE OPTICAL MODEL , 1963 .
[26] Herman Feshbach,et al. The Inelastic Scattering of Neutrons , 1952 .
[27] Arjan J. Koning,et al. From average parameters to statistical resolved resonances , 2013 .
[28] P. Ribon,et al. The resonance self-shielding calculation with regularized random ladders , 1986 .
[29] G. R. Satchler,et al. Introduction to nuclear reactions , 1980 .
[30] J. Lynn. The theory of neutron resonance reactions , 1968 .
[31] T. Rauscher,et al. Status and Prospects , 2022 .