Radiative neutron capture: Hauser Feshbach vs.statistical resonances

[1]  S. Hilaire,et al.  Large-scale deformed quasiparticle random-phase approximation calculations of the γ -ray strength function using the Gogny force , 2016, 1607.08483.

[2]  S. Goriely,et al.  Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force , 2016 .

[3]  A. Koning,et al.  Systematic study of neutron capture including the compound, pre-equilibrium, and direct mechanisms , 2014 .

[4]  S. Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient , 2013 .

[5]  A. Koning,et al.  Temperature-dependent combinatorial level densities with the D1M Gogny force , 2012 .

[6]  Arjan J. Koning,et al.  Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .

[7]  S. Goriely,et al.  Systematic study of direct neutron capture , 2012 .

[8]  Arjan J. Koning,et al.  Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method , 2008 .

[9]  Arjan J. Koning,et al.  Global and local level density models , 2008 .

[10]  A. J. Koning,et al.  Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications , 2008, 0806.2239.

[11]  K. Takahashi,et al.  The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries , 2007, 0705.4512.

[12]  Arjan J. Koning,et al.  Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications , 2006 .

[13]  S. Goriely,et al.  Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas; VI: Weakened pairing , 2006 .

[14]  P. Rullhusen,et al.  Status of the JEFF Nuclear Data Library , 2005 .

[15]  S. Goriely,et al.  Microscopic HFB+QRPA predictions of dipole strength for astrophysics applications , 2003, nucl-th/0306005.

[16]  S. Goriely,et al.  Improved microscopic nuclear level densities , 2003 .

[17]  Arjan J. Koning,et al.  Local and global nucleon optical models from 1 keV to 200 MeV , 2003 .

[18]  P. Descouvemont Cluster models in nuclear astrophysics , 2002 .

[19]  S. Goriely,et al.  Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section , 2002, nucl-th/0203074.

[20]  E. Bauge,et al.  Lane consistent, semimicroscopic nucleon nucleus optical model , 2001 .

[21]  S. Goriely Direct neutron captures and the r-process nucleosynthesis , 1997 .

[22]  Uhl,et al.  Test of gamma-ray strength functions in nuclear reaction model calculations. , 1990, Physical review. C, Nuclear physics.

[23]  C. Rolfs Spectroscopic factors from radiative capture reactions , 1973 .

[24]  P. Moldauer STATISTICAL THEORY OF NUCLEAR COLLISION CROSS SECTIONS , 1964 .

[25]  P. Moldauer AVERAGE RESONANCE PARAMETERS AND THE OPTICAL MODEL , 1963 .

[26]  Herman Feshbach,et al.  The Inelastic Scattering of Neutrons , 1952 .

[27]  Arjan J. Koning,et al.  From average parameters to statistical resolved resonances , 2013 .

[28]  P. Ribon,et al.  The resonance self-shielding calculation with regularized random ladders , 1986 .

[29]  G. R. Satchler,et al.  Introduction to nuclear reactions , 1980 .

[30]  J. Lynn The theory of neutron resonance reactions , 1968 .

[31]  T. Rauscher,et al.  Status and Prospects , 2022 .