Nested Mesoscale Large-Eddy Simulations with WRF: Performance in Real Test Cases

AbstractThis paper assesses the performance of the Weather Research and Forecasting Model (WRF) as a tool for multiscale atmospheric simulations. Tests are performed in real and idealized cases with multiple configurations and with resolutions ranging from the mesoscale (gridcell size ~10 km) for the real cases to local scales (gridcell size ~50 m) for both real and idealized cases. All idealized simulations and the finest real-case simulations use the turbulence-resolving large-eddy simulation mode of WRF (WRF-LES). Tests in neutral conditions and with idealized forcing are first performed to assess the model’s sensitivity to grid resolutions and subgrid-scale parameterizations and to optimize the setup of the real cases. An increase in horizontal model resolution is found to be more beneficial than an increase in vertical resolution. WRF-LES is then tested, using extensive observational data, in real-world cases over complex terrain through nested simulations in which the mesoscale domains drive the LES...

[1]  J. Smith,et al.  Analyzing the Sensitivity of WRF's Single-Layer Urban Canopy Model to Parameter Uncertainty Using Advanced Monte Carlo Simulation , 2011 .

[2]  C. Vincent,et al.  Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications , 2011 .

[3]  Song-You Hong,et al.  Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99 , 2011 .

[4]  Virendra P. Ghate,et al.  Multiple-scale simulations of stratocumulus clouds , 2010 .

[5]  Fotini Katopodes Chow,et al.  Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes , 2010 .

[6]  J. Lundquist,et al.  Implementation of a Nonlinear Subfilter Turbulence Stress Model for Large-Eddy Simulation in the Advanced Research WRF Model , 2010 .

[7]  Yang Zhang,et al.  An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options , 2010 .

[8]  Franco Catalano,et al.  Large-Eddy Simulation of the Daytime Boundary Layer in an Idealized Valley Using the Weather Research and Forecasting Numerical Model , 2010 .

[9]  J. Lundquist,et al.  An Immersed Boundary Method for the Weather Research and Forecasting Model , 2010 .

[10]  J. Dudhia,et al.  Simulating the IHOP_2002 fair-weather CBL with the WRF-ARW-Noah modeling system. Part II: Structures from a few kilometers to 100 km across , 2010 .

[11]  J. Brasseur,et al.  Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scalinga) , 2010 .

[12]  Wei Wang,et al.  Large-Eddy Simulation of an Idealized Tropical Cyclone , 2009 .

[13]  Witold F. Krajewski,et al.  Structure and Evolution of Precipitation along a Cold Front in the Northeastern United States , 2009 .

[14]  M. Parlange,et al.  The Effects of Building Representation and Clustering in Large-Eddy Simulations of Flows in Urban Canopies , 2009 .

[15]  Moti Segal,et al.  On the Impact of WRF Model Vertical Grid Resolution on Midwest Summer Rainfall Forecasts , 2009 .

[16]  P. W. Chan,et al.  Atmospheric turbulence in complex terrain: Verifying numerical model results with observations by remote-sensing instruments , 2009 .

[17]  Fernando Porté-Agel,et al.  Surface Heterogeneity Effects on Regional-Scale Fluxes in Stable Boundary Layers: Surface Temperature Transitions , 2009 .

[18]  Gary M. Lackmann,et al.  Analysis of Idealized Tropical Cyclone Simulations Using the Weather Research and Forecasting Model: Sensitivity to Turbulence Parameterization and Grid Spacing , 2009 .

[19]  William C. Skamarock,et al.  A Conceptual Framework for the Resolution Dependence of Updraft Properties in Cloud System Resolving Models , 2008 .

[20]  V. Alexandrov,et al.  A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula , 2008 .

[21]  Witold F. Krajewski,et al.  Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore MD Metropolitan Region , 2008 .

[22]  U. Piomelli,et al.  Effect of grid discontinuities on large-eddy simulation statistics and flow fields , 2008 .

[23]  P. Augustin,et al.  Transport and dispersion of atmospheric sulphur dioxide from an industrial coastal area during a sea-breeze event , 2007 .

[24]  J. Dudhia,et al.  Examining Two-Way Grid Nesting for Large Eddy Simulation of the PBL Using the WRF Model , 2007 .

[25]  Hervé Delbarre,et al.  Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea , 2007 .

[26]  Dominique Courault,et al.  Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds , 2007 .

[27]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[28]  Fernando Porté-Agel,et al.  Dynamic subgrid‐scale models for momentum and scalar fluxes in large‐eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain , 2006 .

[29]  M. Parlange,et al.  On the Parameterization of Surface Roughness at Regional Scales , 2005 .

[30]  J. Ferziger,et al.  Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow , 2005 .

[31]  Charles Meneveau,et al.  A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows , 2005 .

[32]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[33]  J. Wyngaard Toward Numerical Modeling in the “Terra Incognita” , 2004 .

[34]  Limin Yang,et al.  Development of a 2001 National land-cover database for the United States , 2004 .

[35]  Charles Meneveau,et al.  Large‐eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness , 2004 .

[36]  A. P. Siebesma,et al.  A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection , 2003 .

[37]  Song‐You Hong,et al.  Improvement of the K-profile Model for the Planetary Boundary Layer based on Large Eddy Simulation Data , 2003 .

[38]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[39]  G. Grell,et al.  A generalized approach to parameterizing convection combining ensemble and data assimilation techniques , 2002 .

[40]  H. Kondo,et al.  A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models , 2001 .

[41]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[42]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[43]  S. Pope Turbulent Flows , 2000 .

[44]  F. Porté-Agel,et al.  A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer , 2000, Journal of Fluid Mechanics.

[45]  W. Keydel,et al.  Shuttle Radar Topography Mission , 2000 .

[46]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[47]  C. Meneveau,et al.  Dynamic Smagorinsky model on anisotropic grids , 1997 .

[48]  Branko Kosovic,et al.  Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers , 1997, Journal of Fluid Mechanics.

[49]  C. Bretherton,et al.  An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models , 1996 .

[50]  Marc B. Parlange,et al.  Low‐wavenumber spectral characteristics of velocity and temperature in the atmospheric surface layer , 1995 .

[51]  U. Schumann,et al.  Large‐eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes , 1994 .

[52]  D. Thomson,et al.  Stochastic backscatter in large-eddy simulations of boundary layers , 1992, Journal of Fluid Mechanics.

[53]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[54]  T. Oke Street design and urban canopy layer climate , 1988 .

[55]  A. Perry,et al.  An experimental study of the turbulence structure in smooth- and rough-wall boundary layers , 1987, Journal of Fluid Mechanics.

[56]  M. Ek,et al.  The Influence of Atmospheric Stability on Potential Evaporation , 1984 .

[57]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[58]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[59]  Elie Bou-Zeid,et al.  Implementation and Evaluation of Dynamic Subfilter-Scale Stress Models for Large-Eddy Simulation Using WRF* , 2012 .

[60]  J. Smith,et al.  A Spatially-Analytical Scheme for Surface Temperatures and Conductive Heat Fluxes in Urban Canopy Models , 2011 .

[61]  S. Christopher,et al.  Impact of Land Surface Heterogeneity on Mesoscale Atmospheric Dispersion , 2009 .

[62]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[63]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[64]  C. Bretherton,et al.  Effects of resolution on the simulation of stratocumulus entrainment , 1999 .

[65]  P. Mason Atmospheric boundary layer flows: Their structure and measurement , 1995 .

[66]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[67]  A S Monin,et al.  BASIC LAWS OF TURBULENT MIXING IN THE GROUND LAYER OF ATMOSPHERE , 1954 .

[68]  J. S. Robinson From the A.A.O.T. , 1951 .