Identification of fractional-order transfer functions using exponentially modulated signals with arbitrary excitation waveforms.

This paper proposes a new identification method based on an exponential modulation scheme for the determination of the coefficients and exponents of a fractional-order transfer function. The proposed approach has a broader scope of application compared to a previous method based on step response data, in that it allows for the use of arbitrary input signals. Moreover, it dispenses with the need for repeated simulations during the search for the best fractional exponents, which significantly reduces the computational workload involved in the identification process. Two examples involving measurement noise at the observed system output are presented to illustrate the effectiveness of the proposed method when compared to a conventional output-error optimization approach based on the polytope algorithm. In both examples, the proposed method is found to provide a better trade-off between computational workload and accuracy of the parameter estimates for different realizations of the noise.

[1]  Philip E. Gill,et al.  Practical optimization , 1981 .

[2]  Raoul R. Nigmatullin,et al.  Theory of dielectric relaxation in non-crystalline solids: from a set of micromotions to the averaged collective motion in the mesoscale region , 2005 .

[3]  Abdelbaki Djouambi,et al.  Linear fractional order system identification using adjustable fractional order differentiator , 2014, IET Signal Process..

[4]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[5]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[6]  José António Tenreiro Machado,et al.  Effect of fractional orders in the velocity control of a servo system , 2010, Comput. Math. Appl..

[7]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[8]  Andrea Giusti,et al.  On infinite order differential operators in fractional viscoelasticity , 2017, 1701.06350.

[9]  I. Podlubny,et al.  Modelling heat transfer in heterogeneous media using fractional calculus , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Christophe Farges,et al.  H∞ analysis and control of commensurate fractional order systems , 2013 .

[11]  José António Tenreiro Machado,et al.  Condition-based diagnosis of mechatronic systems using a fractional calculus approach , 2016, Int. J. Syst. Sci..

[12]  Baojin Wang,et al.  State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model , 2017, IEEE Transactions on Control Systems Technology.

[13]  Yaqing Ding,et al.  Parameter identification of fractional order linear system based on Haar wavelet operational matrix. , 2015, ISA transactions.

[14]  Ahmed S Elwakil,et al.  Fractional-order circuits and systems: An emerging interdisciplinary research area , 2010, IEEE Circuits and Systems Magazine.

[15]  Ahmed S. Elwakil,et al.  Fractional-Order Two-Port Networks , 2016 .

[16]  J. Sabatier,et al.  TUTORIAL ON SYSTEM IDENTIFICATION USING FRACTIONAL DIFFERENTIATION MODELS , 2006 .

[17]  Le Van Hien,et al.  Decentralised stabilisation of positive fractional-order interconnected systems , 2017 .

[18]  José António Tenreiro Machado,et al.  Control of a heat diffusion system through a fractional order nonlinear algorithm , 2010, Comput. Math. Appl..

[19]  Roberto Garrappa,et al.  Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models , 2016, Commun. Nonlinear Sci. Numer. Simul..

[20]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[21]  Mohammad Saleh Tavazoei,et al.  Estimation of the Order and Parameters of a Fractional Order Model From a Noisy Step Response Data , 2014 .

[22]  James F. Kelly,et al.  Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity , 2017 .

[23]  Yong Wang,et al.  An innovative parameter estimation for fractional order systems with impulse noise. , 2017, ISA transactions.

[24]  Dingyu Xue,et al.  An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm. , 2017, ISA transactions.

[25]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[26]  Yinggan Tang,et al.  Identification of fractional-order systems with time delays using block pulse functions , 2017 .

[27]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[28]  Zhe Gao,et al.  Robust stability criterion for fractional-order systems with interval uncertain coefficients and a time-delay. , 2015, ISA transactions.

[29]  Yinggan Tang,et al.  Parameter identification of fractional order systems with nonzero initial conditions based on block pulse functions , 2020, Measurement.

[30]  Andrea Giusti,et al.  Prabhakar-like fractional viscoelasticity , 2017, Commun. Nonlinear Sci. Numer. Simul..

[31]  Yadollah Ordokhani,et al.  A numerical solution for fractional optimal control problems via Bernoulli polynomials , 2016 .

[32]  Clara-Mihaela Ionescu,et al.  The role of fractional calculus in modeling biological phenomena: A review , 2017, Commun. Nonlinear Sci. Numer. Simul..

[33]  Baris Baykant Alagoz,et al.  Hurwitz stability analysis of fractional order LTI systems according to principal characteristic equations. , 2017, ISA transactions.

[34]  Roberto Kawakami Harrop Galvão,et al.  Identification of Fractional-Order Transfer Functions Using a Step Excitation , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[35]  Bin Wang,et al.  Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system. , 2016, ISA transactions.

[36]  Mohammad Saleh Tavazoei,et al.  Realizability of Fractional-Order Impedances by Passive Electrical Networks Composed of a Fractional Capacitor and RLC Components , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[38]  A. G. Radwan,et al.  Resonance and Quality Factor of the $RL_{\alpha} C_{\alpha}$ Fractional Circuit , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[39]  José António Tenreiro Machado,et al.  Fractional order electromagnetics , 2006, Signal Process..

[40]  Ahmed S. Elwakil,et al.  Further experimental evidence of the fractional-order energy equation in supercapacitors , 2017 .

[41]  Ahmed S. Elwakil,et al.  Analysis and realization of a switched fractional‐order‐capacitor integrator , 2016, Int. J. Circuit Theory Appl..

[42]  L. Dissado,et al.  Invariant behaviour classes for the response of simple fractal circuits , 1991 .

[43]  Francesco Mainardi,et al.  On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics , 2015, J. Comput. Phys..