Neutron Scattering Studies of Heterogeneous Catalysis

Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure-catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron-nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis.

[1]  M. Chi,et al.  In Situ Neutron Scattering Study of the Structure Dynamics of the Ru/Ca2N:e– Catalyst in Ammonia Synthesis , 2023, Chemistry of Materials.

[2]  L. Daemen,et al.  A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran , 2022, Nature Communications.

[3]  Todd J. Toops,et al.  Defect Engineering of Ceria Nanocrystals for Enhanced Catalysis via a High-Entropy Oxide Strategy , 2022, ACS central science.

[4]  E. Groppo,et al.  Evidence for H2-Induced Ductility in a Pt/Al2O3 Catalyst , 2022, ACS Catalysis.

[5]  M. Harada,et al.  In Situ Small-Angle Neutron Scattering Analysis of Water Evaporation from Porous Exhaust-Gas-Catalyst Supports. , 2022, ACS applied materials & interfaces.

[6]  M. Kitano,et al.  Hexagonal BaTiO(3-x)Hx Oxyhydride as a Water-Durable Catalyst Support for Chemoselective Hydrogenation. , 2022, Journal of the American Chemical Society.

[7]  K. Herwig,et al.  A concept of a broadband inverted geometry spectrometer for the Second Target Station at the Spallation Neutron Source. , 2022, The Review of scientific instruments.

[8]  G. Centi,et al.  Catalysis for e-Chemistry: Need and Gaps for a Future De-Fossilized Chemical Production, with Focus on the Role of Complex (Direct) Syntheses by Electrocatalysis , 2022, ACS catalysis.

[9]  A. Kolesnikov,et al.  Lattice dynamics of high-pressure hydrides studied by inelastic neutron scattering , 2022, Journal of Alloys and Compounds.

[10]  M. Chi,et al.  Manipulating Copper Dispersion on Ceria for Enhanced Catalysis: A Nanocrystal‐Based Atom‐Trapping Strategy , 2022, Advanced science.

[11]  S. Dann,et al.  Characterisation of ethylene adsorption on model skeletal cobalt catalysts by inelastic and quasi-elastic neutron scattering , 2022, Catalysis Communications.

[12]  C. Tang,et al.  Importance of Hydrogen Migration in Catalytic Ammonia Synthesis over Yttrium-Doped Barium Zirconate-Supported Ruthenium Nanoparticles: Visualization of Proton Trap Sites , 2021, The Journal of Physical Chemistry C.

[13]  J. Yeh,et al.  A perspective on the catalysis using the high entropy alloys , 2021 .

[14]  P. Chien,et al.  New Insights into Structural Evolution of LiNiO 2 Revealed by Operando Neutron Diffraction , 2021, Batteries & Supercaps.

[15]  P. Chien,et al.  Structural Evolution and Transition Dynamics in Lithium Ion Battery under Fast Charging: An Operando Neutron Diffraction Investigation , 2021, Advanced science.

[16]  H. Hosono,et al.  Ammonia Decomposition over CaNH-Supported Ni Catalysts via an NH2–-Vacancy-Mediated Mars–van Krevelen Mechanism , 2021, ACS Catalysis.

[17]  F. Zaera In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions , 2021, Journal of Catalysis.

[18]  B. Weckhuysen,et al.  The active phase in cobalt-based Fischer-Tropsch synthesis , 2021, Chem Catalysis.

[19]  J. Paier,et al.  Electronic structure of reduced CeO2(111) surfaces interacting with hydrogen as revealed through electron energy loss spectroscopy in comparison with theoretical investigations , 2021 .

[20]  S. Parker,et al.  Net Zero and Catalysis: How Neutrons Can Help , 2021, Physchem.

[21]  B. Sumpter,et al.  New Insights into the Bulk and Surface Defect Structures of Ceria Nanocrystals from Neutron Scattering Study , 2021 .

[22]  L. Daemen,et al.  Neutron Insights into Sorption Enhanced Methanol Catalysis , 2021, Topics in Catalysis.

[23]  L. Daemen,et al.  On the Structural Transformation of Ni/BaH2 During a N2-H2 Chemical Looping Process for Ammonia Synthesis: A Joint In Situ Inelastic Neutron Scattering and First-Principles Simulation Study , 2021, Topics in Catalysis.

[24]  S. Parker,et al.  The Characterisation of Hydrogen on Nickel and Cobalt Catalysts , 2021, Topics in Catalysis.

[25]  Dennis P. Nelson,et al.  Operando Neutron Scattering: Following Reactions in Real Time Using Neutrons , 2021, Topics in Catalysis.

[26]  A. Frenkel,et al.  Deciphering the Local Environment of Single-Atom Catalysts with X-ray Absorption Spectroscopy. , 2021, Accounts of chemical research.

[27]  A. Soper,et al.  Adsorption of simple gases into the porous glass MCM-41. , 2021, The Journal of chemical physics.

[28]  S. Dai,et al.  High-entropy materials for catalysis: A new frontier , 2021, Science Advances.

[29]  Jianping Guo,et al.  Interplay of Alkali, Transition Metals, Nitrogen, and Hydrogen in Ammonia Synthesis and Decomposition Reactions. , 2021, Accounts of chemical research.

[30]  S. Parker,et al.  Applications of Neutron Scattering in Technical Catalysis: Characterisation of Hydrogenous Species on/in Unsupported and Supported Palladium , 2021, Topics in Catalysis.

[31]  C. Hardacre,et al.  Bulk and Confined Benzene-Cyclohexane Mixtures Studied by an Integrated Total Neutron Scattering and NMR Method , 2021, Topics in Catalysis.

[32]  Michael E. Ziebel,et al.  Magnetic ordering through itinerant ferromagnetism in a metal–organic framework , 2021, Nature Chemistry.

[33]  R. Faller,et al.  Computing inelastic neutron scattering spectra from molecular dynamics trajectories , 2021, Scientific Reports.

[34]  K. Polychronopoulou,et al.  High entropy oxides-exploring a paradigm of promising catalysts: A review , 2021, Materials & Design.

[35]  V. Sharma,et al.  Diffusion of confined fluids in microporous zeolites and clay materials , 2021, Reports on progress in physics. Physical Society.

[36]  D. Penumadu,et al.  Spectral neutron tomography , 2021 .

[37]  L. Daemen,et al.  Control of zeolite microenvironment for propene synthesis from methanol , 2021, Nature communications.

[38]  Xue-qing Gong,et al.  Interaction of Hydrogen with Ceria: Hydroxylation, Reduction, and Hydride Formation on the Surface and in the Bulk , 2020, Chemistry.

[39]  H. Hosono,et al.  Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride‐Ion Mobility for Low‐Temperature Ammonia Synthesis , 2020, Advanced Energy Materials.

[40]  G. Cibin,et al.  The application of inelastic neutron scattering to investigate iron-based Fischer-Tropsch to olefins catalysis , 2020 .

[41]  C. Finney,et al.  Dynamics of hydrogen loss and structural changes in pyrolyzing biomass utilizing neutron imaging , 2020 .

[42]  T. Livneh,et al.  Raman Scattering from Cerium Hydride Growth Centers Overlayered by Hydrogen-Incorporated Oxide , 2020 .

[43]  Yu Cao,et al.  Vanadium Hydride as an Ammonia Synthesis Catalyst , 2020 .

[44]  Yuanhua Xia,et al.  In-situ small angle neutron scattering analysis of hydride initiation on oxide-coated metal with surface signals enhanced by a multi-plate reaction chamber , 2020 .

[45]  A. Kolesnikov,et al.  Simulation of Inelastic Neutron Scattering Spectra Directly from Molecular Dynamics Trajectories. , 2020, Journal of chemical theory and computation.

[46]  B. Likozar,et al.  Propylene Epoxidation using Molecular Oxygen over Copper- and Silver-Based Catalysts: A Review , 2020 .

[47]  L. Daemen,et al.  Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions , 2020 .

[48]  S. Parker The Interaction of Hydrogen with Iron Benzene-1,3,5-Tricarboxylate (Fe-BTC) , 2020, Catalysts.

[49]  J. Timoshenko,et al.  In Situ/Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy , 2020, Chemical reviews.

[50]  Guangai Sun,et al.  In Situ Small-Angle Neutron Scattering Analysis of the Initial Deuteride Formation of Deuterium–Cerium Reactions under a Controlled Gas Flow , 2020 .

[51]  Yanyong Wang,et al.  Defect Chemistry in Heterogeneous Catalysis: Recognition, Understanding, and Utilization , 2020 .

[52]  Kristin A Persson,et al.  Defect-Accommodating Intermediates Yield Selective Low-Temperature Synthesis of YMnO3 Polymorphs. , 2020, Inorganic chemistry.

[53]  G. Viggiani,et al.  NeXT-Grenoble, the Neutron and X-ray tomograph in Grenoble , 2020 .

[54]  Hongda Du,et al.  Atomic Imaging of Subsurface Interstitial Hydrogen and Insights into Surface Reactivity of Palladium Hydrides. , 2020, Angewandte Chemie.

[55]  K. Butler,et al.  Understanding dynamic properties of materials using neutron spectroscopy and atomistic simulation , 2020, Journal of Physics Communications.

[56]  G. Somorjai,et al.  A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis , 2020, Applied Catalysis A: General.

[57]  Muhammad Aziz,et al.  Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization , 2020, Energies.

[58]  S. F. Parker,et al.  Neutron spectroscopy studies of methanol to hydrocarbons catalysis over ZSM-5 , 2020 .

[59]  L. Daemen,et al.  Discriminating the Role of Surface Hydride and Hydroxyl for Acetylene Semihydrogenation over Ceria through In Situ Neutron and Infrared Spectroscopy , 2020 .

[60]  A. Borgschulte,et al.  Volatile Hydrogen Intermediates of CO2 Methanation by Inelastic Neutron Scattering , 2020, Catalysts.

[61]  L. Daemen,et al.  On the Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst. , 2020, Journal of the American Chemical Society.

[62]  H. Hayashida,et al.  The energy-resolved neutron imaging system, RADEN. , 2020, The Review of scientific instruments.

[63]  Hailong Li,et al.  CO2 hydrogenation to methanol: the structure–activity relationships of different catalyst systems , 2020, Energy, Ecology and Environment.

[64]  Christian Plessl,et al.  CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. , 2020, The Journal of chemical physics.

[65]  E. Mamontov,et al.  Non-monotonic behavior of the lateral diffusivity in an adsorbate as a function of the surface coverage , 2020 .

[66]  S. Parker,et al.  Hydrogen Partitioning as a Function of Time-on-Stream for an Unpromoted Iron-Based Fischer–Tropsch Synthesis Catalyst Applied to CO Hydrogenation , 2019, Industrial & Engineering Chemistry Research.

[67]  Xiaobo Chen,et al.  In Situ Transmission Electron Microscopy on Energy‐Related Catalysis , 2019, Advanced Energy Materials.

[68]  H. Hosono,et al.  Low-Temperature Synthesis of Perovskite Oxynitride-Hydrides as Ammonia Synthesis Catalysts. , 2019, Journal of the American Chemical Society.

[69]  L. Daemen,et al.  Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework , 2019, Nature Chemistry.

[70]  H. Freund,et al.  Oxidation of Reduced Ceria by Incorporation of Hydrogen , 2019, Angewandte Chemie.

[71]  Zhongmin Liu,et al.  Recent Progress in Methanol‐to‐Olefins (MTO) Catalysts , 2019, Advanced materials.

[72]  Ping Chen,et al.  Recent progress towards mild-condition ammonia synthesis , 2019, Journal of Energy Chemistry.

[73]  C. Lamberti,et al.  Dynamics of Reactive Species and Reactant-Induced Reconstruction of Pt Clusters in Pt/Al2O3 Catalysts , 2019, ACS Catalysis.

[74]  A. Magerl,et al.  First results with the neutron backscattering and TOF spectrometer option BATS on IN16B , 2019, Physica B: Condensed Matter.

[75]  L. Daemen,et al.  Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper-Chromium-Iron Oxide Catalyst. , 2019, Journal of the American Chemical Society.

[76]  S. Parker,et al.  Adsorbed States of Hydrogen on Platinum: A New Perspective , 2019, Chemistry.

[77]  G. Škoro,et al.  Visualization of the Catalyzed Nuclear-Spin Conversion of Molecular Hydrogen Using Energy-Selective Neutron Imaging , 2019, The Journal of Physical Chemistry C.

[78]  Craig M. Brown,et al.  Neutron Instruments for Research in Coordination Chemistry. , 2019, European journal of inorganic chemistry.

[79]  A. Hill,et al.  Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent: A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation. , 2019, ACS applied materials & interfaces.

[80]  A. Kolesnikov,et al.  Simulation of Inelastic Neutron Scattering Spectra Using OCLIMAX. , 2019, Journal of chemical theory and computation.

[81]  D. F. Kennedy,et al.  Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification , 2019, International Journal of Hydrogen Energy.

[82]  Suwardiyanto,et al.  Investigation of ZSM-5 catalysts for dimethylether conversion using inelastic neutron scattering , 2019, Applied Catalysis A: General.

[83]  A. Zachariou,et al.  Investigation of the Dynamics of 1-Octene Adsorption at 293 K in a ZSM-5 Catalyst by Inelastic and Quasielastic Neutron Scattering , 2018, The Journal of Physical Chemistry C.

[84]  S. Parker,et al.  AbINS: The modern software for INS interpretation , 2018, Physica B: Condensed Matter.

[85]  O. Matz,et al.  Breaking H2 with CeO2: Effect of Surface Termination , 2018, ACS omega.

[86]  Zili Wu,et al.  Neutron Scattering Investigations of Hydride Species in Heterogeneous Catalysis. , 2018, ChemSusChem.

[87]  F. Chang,et al.  Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers , 2018, Nature Energy.

[88]  L. Daemen,et al.  Optimal Binding of Acetylene to a Nitro-Decorated Metal–Organic Framework , 2018, Journal of the American Chemical Society.

[89]  P. Trtik,et al.  Observing Chemical Reactions by Time-Resolved High-Resolution Neutron Imaging , 2018, The Journal of Physical Chemistry C.

[90]  D. Hildebrandt,et al.  Cobalt hybrid catalysts in Fischer-Tropsch synthesis , 2018 .

[91]  Matthew T. Dunstan,et al.  A high temperature gas flow environment for neutron total scattering studies of complex materials. , 2018, The Review of scientific instruments.

[92]  A. Huq,et al.  AGES: Automated Gas Environment System for in situ neutron powder diffraction. , 2018, The Review of scientific instruments.

[93]  K. An,et al.  A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory. , 2018, The Review of scientific instruments.

[94]  I. Silverwood,et al.  Surface diffusion of cyclic hydrocarbons on nickel , 2018, Surface Science.

[95]  G. Škoro,et al.  The neutron guide upgrade of the TOSCA spectrometer , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[96]  J. Banhart,et al.  Advances in neutron imaging , 2018, Materials Today.

[97]  B. Weckhuysen,et al.  Recent trends and fundamental insights in the methanol-to-hydrocarbons process , 2018, Nature Catalysis.

[98]  S. Prévost,et al.  A Small-Angle Neutron Scattering Environment for In-Situ Observation of Chemical Processes , 2018, Scientific Reports.

[99]  C. Hardacre,et al.  Confinement Effects on the Benzene Orientational Structure , 2018, Angewandte Chemie.

[100]  M. Hoffmann,et al.  The politics of decarbonization and the catalytic impact of subnational climate experiments , 2018, Policy sciences.

[101]  H. Hosono,et al.  Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis. , 2018, Angewandte Chemie.

[102]  J. Neilson,et al.  Capturing the Details of N2 Adsorption in Zeolite X Using Stroboscopic Isotope Contrasted Neutron Total Scattering , 2018 .

[103]  C. Catlow,et al.  Low-T Mechanisms of Ammonia Synthesis on Co3Mo3N , 2018 .

[104]  A. Sjåstad,et al.  New Insights into Hydride Bonding, Dynamics, and Migration in La2LiHO3 Oxyhydride. , 2018, The journal of physical chemistry letters.

[105]  L. Daemen,et al.  Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy. , 2018, The Review of scientific instruments.

[106]  J. Paier,et al.  Toward an Understanding of Selective Alkyne Hydrogenation on Ceria: On the Impact of O Vacancies on H2 Interaction with CeO2(111). , 2017, Journal of the American Chemical Society.

[107]  Eberhard H. Lehmann,et al.  Neutron Imaging Facilities in a Global Context , 2017, J. Imaging.

[108]  P. Trtik,et al.  Neutron imaging of fuel cells – Recent trends and future prospects , 2017 .

[109]  Juan J. Bravo-Suárez,et al.  Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis , 2017 .

[110]  A. Hector,et al.  The Role of Composition for Cobalt Molybdenum Carbide in Ammonia Synthesis , 2017 .

[111]  A. Soper,et al.  Density profile of nitrogen in cylindrical pores of MCM-41 , 2017 .

[112]  L. Daemen,et al.  Selective production of arenes via direct lignin upgrading over a niobium-based catalyst , 2017, Nature Communications.

[113]  L. Daemen,et al.  Direct Neutron Spectroscopy Observation of Cerium Hydride Species on a Cerium Oxide Catalyst. , 2017, Journal of the American Chemical Society.

[114]  J. Keum,et al.  Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO2 Nanocrystals and Its Implication on Photocatalytic Activity , 2017 .

[115]  F. Chang,et al.  Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt , 2017 .

[116]  K. Jalama Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: Review of kinetics and mechanism , 2017 .

[117]  Miguel A. Bañares,et al.  A decade+ of operando spectroscopy studies , 2017 .

[118]  C. Catlow,et al.  Understanding the Role of Molecular Diffusion and Catalytic Selectivity in Liquid-Phase Beckmann Rearrangement , 2017 .

[119]  P. F. Peterson,et al.  A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials. , 2017, The Review of scientific instruments.

[120]  M. Hirscher,et al.  Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites , 2017, Nature Communications.

[121]  Hideo Hosono,et al.  Ru-Loaded C12A7:e– Electride as a Catalyst for Ammonia Synthesis , 2017 .

[122]  Miaofang Chi,et al.  Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements. , 2017, Accounts of chemical research.

[123]  G. Goret,et al.  MDANSE: An Interactive Analysis Environment for Molecular Dynamics Simulations , 2017, J. Chem. Inf. Model..

[124]  J. Nelson,et al.  How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study , 2016, Scientific Reports.

[125]  C. Catlow,et al.  Adsorption of formate species on Cu(h,k,l) low index surfaces , 2016 .

[126]  R. Schlögl,et al.  Bridging the Time Gap: A Copper/Zinc Oxide/Aluminum Oxide Catalyst for Methanol Synthesis Studied under Industrially Relevant Conditions and Time Scales. , 2016, Angewandte Chemie.

[127]  W. Fang,et al.  Advanced functionalized Mg2AlNiXHZOY nano-oxyhydrides ex-hydrotalcites for hydrogen production from oxidative steam reforming of ethanol , 2016 .

[128]  S. Parker,et al.  Applications of neutron scattering to heterogeneous catalysis , 2016 .

[129]  A. Steuwer,et al.  Observation of the δ to ε Zr‐hydride transition by in‐situ synchrotron X‐ray diffraction , 2016 .

[130]  H. Mizoguchi,et al.  Hydride-Based Electride Material, LnH2 (Ln = La, Ce, or Y). , 2016, Inorganic chemistry.

[131]  H. Kitagawa,et al.  Nanometer-Size Effect on Hydrogen Sites in Palladium Lattice. , 2016, Journal of the American Chemical Society.

[132]  Brian M. Wyvratt,et al.  Reactivity of Hydrogen on and in Nanostructured Molybdenum Nitride: Crotonaldehyde Hydrogenation , 2016 .

[133]  C. Copéret,et al.  Isolated Surface Hydrides: Formation, Structure, and Reactivity. , 2016, Chemical reviews.

[134]  W. Fang,et al.  Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst , 2016 .

[135]  P. Bonnesen,et al.  Development of in situ Electrochemical Small-Angle Neutron Scattering (eSANS) for Simultaneous Structure and Redox Characterization of Nanoparticles. , 2016, ECS transactions.

[136]  C. Hardacre,et al.  Neutron Scattering of Aromatic and Aliphatic Liquids , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[137]  I. Baxendale,et al.  Development of the industrial synthesis of vitamin A , 2016 .

[138]  Xue-qing Gong,et al.  Direct hydrodeoxygenation of raw woody biomass into liquid alkanes , 2016, Nature Communications.

[139]  F. Tao,et al.  Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. , 2016, Chemical reviews.

[140]  S. Kim,et al.  Support-shape dependent catalytic activity in Pt/alumina systems using ultra-small (USANS) and small angle neutron scattering (SANS) , 2016 .

[141]  N. Xu,et al.  Nanoscale Insights into the Hydrogenation Process of Layered α-MoO3. , 2016, ACS nano.

[142]  C. Catlow,et al.  Diffusion of isobutane in silicalite: a neutron spin-echo and molecular dynamics simulation study , 2015 .

[143]  H. Hosono,et al.  Mechanism Switching of Ammonia Synthesis Over Ru-Loaded Electride Catalyst at Metal-Insulator Transition. , 2015, Journal of the American Chemical Society.

[144]  D. J. Price,et al.  The influence of pre-treatment gas mixture upon the ammonia synthesis activity of Co-Re catalysts , 2015 .

[145]  F. Chang,et al.  Highly Active MnN-Li2NH Composite Catalyst for Producing COx-Free Hydrogen , 2015 .

[146]  F. Chang,et al.  Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition. , 2015, Angewandte Chemie.

[147]  K. Refson,et al.  How the surface structure determines the properties of CuH. , 2015, Inorganic chemistry.

[148]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction , 2014 .

[149]  H. Auer,et al.  Reinvestigation of Crystal Structure and Non‐Stoichiometry in Copper Hydride, CuH1–x (0 ≤ x ≤ 0.26) , 2014 .

[150]  S. Parker,et al.  Sample environment issues relevant to the acquisition of inelastic neutron scattering measurements of heterogeneous catalyst samples , 2014 .

[151]  S. Parker,et al.  The use of direct geometry spectrometers in molecular spectroscopy , 2014 .

[152]  J. Kulda,et al.  IN1-LAGRANGE – the new ILL instrument to explore vibration dynamics of complex materials , 2014 .

[153]  S. Miret-Artés,et al.  Benzene diffusion on graphite described by a rough hard disk model , 2014 .

[154]  N. López,et al.  Unique Reaction Path in Heterogeneous Catalysis: The Concerted Semi-Hydrogenation of Propyne to Propene on CeO2 , 2014 .

[155]  Anmin Zheng,et al.  New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. , 2014, Chemistry.

[156]  Yan Yang,et al.  Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni–Mo phosphides: Effect of Ni/Mo ratio , 2014 .

[157]  Andrew L Goodwin,et al.  Crystallography with powders. , 2014, Nature materials.

[158]  L. Vlček,et al.  Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations , 2014 .

[159]  Thomas J Wood,et al.  Hydrogen production from ammonia using sodium amide. , 2014, Journal of the American Chemical Society.

[160]  Markus Widenmeyer,et al.  Formation and Decomposition of Iron Nitrides Observed by in situ Powder Neutron Diffraction and Thermal Analysis , 2014 .

[161]  N. López,et al.  Homolytic Products from Heterolytic Paths in H2 Dissociation on Metal Oxides: The Example of CeO2 , 2014 .

[162]  P. Debenedetti,et al.  The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films. , 2014, The Journal of chemical physics.

[163]  Wuzong Zhou,et al.  The application of inelastic neutron scattering to investigate CO hydrogenation over an iron Fischer–Tropsch synthesis catalyst , 2014 .

[164]  D. K. Schwartz,et al.  Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. , 2014, Accounts of chemical research.

[165]  S. Parker,et al.  Palladium-catalyzed selective hydrogenation of nitroarenes: Influence of platinum and iron on activity, particle morphology and formation of β-palladium hydride , 2014 .

[166]  S. Parker,et al.  Inelastic neutron scattering studies of methyl chloride synthesis over alumina. , 2014, Accounts of chemical research.

[167]  Naoki Nitta,et al.  In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors. , 2014, ACS nano.

[168]  R. Schlögl,et al.  Microstructural and Defect Analysis of Metal Nanoparticles in Functional Catalysts by Diffraction and Electron Microscopy: The Cu/ZnO Catalyst for Methanol Synthesis , 2014, Topics in Catalysis.

[169]  Sihai Yang,et al.  Inelastic neutron scattering study of binding of para-hydrogen in an ultra-microporous metal-organic framework , 2014 .

[170]  R. Walton,et al.  Interaction of methanol with the flexible metal-organic framework MIL-53(Fe) observed by inelastic neutron scattering , 2013 .

[171]  Andrew R. McFarlane,et al.  The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst , 2013 .

[172]  Robert Schlögl,et al.  The Haber-Bosch process revisited: on the real structure and stability of "ammonia iron" under working conditions. , 2013, Angewandte Chemie.

[173]  Todd J. Toops,et al.  Neutron tomography of particulate filters: a non-destructive investigation tool for applied and industrial research , 2013 .

[174]  A. Huq,et al.  An in-situ neutron diffraction study of the crystal structure of PrBaCo2O5 + δ at high temperature and controlled oxygen partial pressure , 2013 .

[175]  W. Fang,et al.  Room Temperature Hydrogen Production from Ethanol over CeNiXHZOY Nano‐Oxyhydride Catalysts , 2013 .

[176]  L. Gladden,et al.  Probing chemistry and kinetics of reactions in heterogeneous catalysts , 2013 .

[177]  P. Pfeifer,et al.  Quantum excitation spectrum of hydrogen adsorbed in nanoporous carbons observed by inelastic neutron scattering , 2013 .

[178]  R. Schlögl,et al.  The role of the oxide component in the development of copper composite catalysts for methanol synthesis. , 2013, Angewandte Chemie.

[179]  Martin J Hollamby,et al.  Practical applications of small-angle neutron scattering. , 2013, Physical chemistry chemical physics : PCCP.

[180]  S. Parker,et al.  Vibrational analysis of an industrial Fe-based Fischer-Tropsch catalyst employing inelastic neutron scattering. , 2013, Angewandte Chemie.

[181]  R. Schlögl,et al.  In situ study of catalytic processes: neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure. , 2013, Angewandte Chemie.

[182]  G. Yushin,et al.  Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. , 2013, Angewandte Chemie.

[183]  Jung-Hyun Kim,et al.  Visualizing oxygen anion transport pathways in NdBaCo2O5+δ by in situ neutron diffraction , 2013 .

[184]  P. Fouquet,et al.  The application of quasi-elastic neutron scattering techniques (QENS) in surface diffusion studies , 2012 .

[185]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[186]  Andrew R. McFarlane,et al.  Application of inelastic neutron scattering to studies of CO2 reforming of methane over alumina-supported nickel and gold-doped nickel catalysts. , 2012, Physical chemistry chemical physics : PCCP.

[187]  K. K. Chipley,et al.  The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS , 2012 .

[188]  R. Niewa,et al.  In situ Neutron Diffraction in the System Fe–N , 2012 .

[189]  E. Mamontov,et al.  Dynamics of phenanthrenequinone on carbon nano-onion surfaces probed by quasielastic neutron scattering. , 2012, The journal of physical chemistry. B.

[190]  S. Hosokawa,et al.  An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity. , 2012, Nature materials.

[191]  V. Reipa,et al.  In situ Electrochemical Small-Angle Neutron Scattering (eSANS) for Quantitative Structure and Redox Properties of Nanoparticles. , 2012, The journal of physical chemistry letters.

[192]  S. Parker,et al.  Vibrational Spectroscopy with Neutrons: A Review of New Directions , 2011 .

[193]  S. Parker,et al.  Characterization of β-Palladium Hydride Formation in the Lindlar Catalyst and in Carbon-Supported Palladium , 2011 .

[194]  C. Pirez,et al.  Highly efficient and stable CeNiH(Z)O(Y) nano-oxyhydride catalyst for H2 production from ethanol at room temperature. , 2011, Angewandte Chemie.

[195]  G. Ehlers,et al.  The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance. , 2011, The Review of scientific instruments.

[196]  V. Sharma,et al.  Dynamics of Molecules Adsorbed in Zeolitic Systems: Neutron Scattering and MD Simulation Studies , 2011 .

[197]  Jens R. Rostrup-Nielsen,et al.  Concepts in Syngas Manufacture , 2011 .

[198]  Robert Bewley,et al.  LET, a cold neutron multi-disk chopper spectrometer at ISIS , 2011 .

[199]  Craig M. Brown,et al.  Neutron Scattering and Spectroscopic Studies of Hydrogen Adsorption in Cr3(BTC)2—A Metal−Organic Framework with Exposed Cr2+ Sites , 2011 .

[200]  Andrew R. McFarlane,et al.  Experimental arrangements suitable for the acquisition of inelastic neutron scattering spectra of heterogeneous catalysts. , 2011, The Review of scientific instruments.

[201]  S. Parker The role of hydroxyl groups in low temperature carbon monoxide oxidation. , 2011, Chemical communications.

[202]  Adriano Zecchina,et al.  Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. , 2010, Chemical Society reviews.

[203]  T. Blasco Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. , 2010, Chemical Society reviews.

[204]  V. Sharma,et al.  Effect of guest-host interaction on the dynamics of ethylene glycol in H-ZSM5 zeolite , 2010 .

[205]  S. Hull,et al.  New high temperature gas flow cell developed at ISIS , 2010 .

[206]  S. Parker,et al.  Persistent species formed during the carbon dioxide reforming of methane over a nickel–alumina catalyst , 2010 .

[207]  E. Mamontov,et al.  Diffusion and adsorption of methane confined in nano-porous carbon aerogel: A combined quasi-elastic and small-angle neutron scattering study , 2010 .

[208]  P. Battle,et al.  In situ neutron diffraction study of the high-temperature redox chemistry of Ln3−xSr1+xCrNiO8−δ (Ln = La, Nd) under hydrogen , 2010 .

[209]  A. Soper,et al.  Structure determination of adsorbed hydrogen on a real catalyst. , 2010, Chemical communications.

[210]  S. Parker,et al.  Quantification of surface species present on a nickel/alumina methane reforming catalyst. , 2010, Physical chemistry chemical physics : PCCP.

[211]  V. Sharma,et al.  Dynamics of Propylene adsorbed in Na-Y and Na-ZSM5 Zeolites: A QENS and MD Simulation Study , 2010 .

[212]  E. Mamontov,et al.  Recent Backscattering Instrument Developments at the ILL and SNS , 2010 .

[213]  S. Parker Spectroscopy and bonding in ternary metal hydride complexes—Potential hydrogen storage media , 2010 .

[214]  A. Soper,et al.  Structure of pi-pi interactions in aromatic liquids. , 2010, Journal of the American Chemical Society.

[215]  John Banhart,et al.  Advances in neutron radiography and tomography , 2009 .

[216]  A. Studer,et al.  Wombat and Echidna: The Powder Diffractometers , 2009 .

[217]  J. Caro,et al.  Intracrystalline transport resistances in nanoporous zeolite X. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[218]  A. Rempel,et al.  Hydrogen in nonstoichiometric cubic niobium carbides: Neutron vibrational spectroscopy and neutron diffraction studies , 2009 .

[219]  Craig M. Brown,et al.  Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study , 2009, Nanotechnology.

[220]  M. Rao,et al.  Dynamics of adsorbed hydrocarbon in nanoporous zeolite framework. , 2009, The journal of physical chemistry. B.

[221]  D. Marx,et al.  Methanol synthesis on ZnO(0001). I. Hydrogen coverage, charge state of oxygen vacancies, and chemical reactivity. , 2009, The Journal of chemical physics.

[222]  A. Barbour,et al.  Neutron investigations of rotational motions in monolayer and multilayer films at the interface of MgO and graphite surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[223]  T. Müller,et al.  Identification of reaction intermediates during hydrogenation of CD3CN on Raney-Co , 2009 .

[224]  M. Hayashi,et al.  IBARAKI materials design diffractometer (iMATERIA)—Versatile neutron diffractometer at J-PARC , 2009 .

[225]  R. Ibberson Design and performance of the new supermirror guide on HRPD at ISIS , 2009 .

[226]  H. Jobic,et al.  Hydrogen storage in CeNiXOY and CeM0.5NiXOY (M = Zr or Al) mixed oxides , 2008 .

[227]  S. Mitra,et al.  Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites: Neutron scattering and FTIR studies , 2008 .

[228]  W. Winiwarter,et al.  How a century of ammonia synthesis changed the world , 2008 .

[229]  Weimin Yang,et al.  Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5 , 2008 .

[230]  L. Vlček,et al.  Dynamics of Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation , 2008 .

[231]  G. Kubas,et al.  Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. , 2007, Chemical reviews.

[232]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[233]  C. Hardacre,et al.  Structure and solvation in ionic liquids. , 2007, Accounts of chemical research.

[234]  Doros N. Theodorou,et al.  Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites , 2007 .

[235]  B. Ma,et al.  Oxygen Non‐Stoichiometry and Thermal–Chemical Expansion of Ce0.8Y0.2O1.9−δ Electrolytes by Neutron Diffraction , 2007 .

[236]  P. Mitchell,et al.  Hydrogen adsorption in a copper ZSM5 zeolite An inelastic neutron scattering study , 2007 .

[237]  Allan Walton,et al.  A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. , 2007, Journal of the American Chemical Society.

[238]  M. Zoppi,et al.  Hydrogen self-dynamics in orthorhombic alkaline earth hydrides through incoherent inelastic neutron scattering , 2007 .

[239]  S. Chaplot,et al.  Diffusion of acetylene embedded in Na–Y zeolite: QENS and MD simulation studies , 2006 .

[240]  J. Fierro,et al.  Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas , 2006 .

[241]  J. Vega,et al.  Quasi-elastic peak lineshapes in adsorbate diffusion on nearly flat surfaces at low coverages: the motional narrowing effect in Xe on Pt(111) , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[242]  G. Bond,et al.  Selective Hydrogenation of Ethyne in Ethene‐Rich Streams on Palladium Catalysts. Part 1. Effect of Changes to the Catalyst During Reaction , 2006 .

[243]  S. Parker,et al.  Characterisation of the adsorption sites of hydrogen on Pt/C fuel cell catalysts , 2006 .

[244]  T. Mason Pulsed Neutron Scattering for the 21st Century , 2006 .

[245]  J. Kärger,et al.  PFG NMR and QENS diffusion study of n-alkane homologues in MFI-type zeolites , 2006 .

[246]  S. Mitra,et al.  Fourier transform infrared and quasielectron neutron scattering studies on the binding modes of methanol molecules in the confined spaces of HMCM-41 and HZSM-5: role of pore structure and surface acid sites. , 2006, The journal of physical chemistry. B.

[247]  D. Theodorou,et al.  Diffusion of long n-alkanes in silicalite. A comparison between neutron scattering experiments and hierarchical simulation results. , 2006, The journal of physical chemistry. B.

[248]  E. Mamontov,et al.  Observation of fragile-to-strong liquid transition in surface water in CeO2. , 2005, The Journal of chemical physics.

[249]  Calvin H. Bartholomew,et al.  Fundamentals of Industrial Catalytic Processes: Bartholomew/Fundamentals , 2005 .

[250]  Jon W. Taylor,et al.  An infrared and inelastic neutron scattering spectroscopic investigation on the interaction of eta-alumina and methanol. , 2005, Physical chemistry chemical physics : PCCP.

[251]  E. Mamontov High-resolution neutron-scattering study of slow dynamics of surface water molecules in zirconium oxide. , 2005, The Journal of chemical physics.

[252]  S. Parker,et al.  Vibrational Spectroscopy with Neutrons - With Applications in Chemistry, Biology, Materials Science and Catalysis , 2005 .

[253]  F. Leroy,et al.  Influence of extra-framework cations on the diffusion of alkanes in silicalite: Comparison between quasi-elastic neutron scattering and molecular simulations , 2005 .

[254]  M. Dry,et al.  Present and future applications of the Fischer–Tropsch process , 2004 .

[255]  E. Mamontov Dynamics of surface water in ZrO2 studied by quasielastic neutron scattering. , 2004, The Journal of chemical physics.

[256]  G. Corradi,et al.  Hydrogen dynamics in heavy alkali metal hydrides obtained through inelastic neutron scattering , 2004 .

[257]  J. Lercher,et al.  Investigation of the Adsorption of Methanol on Alkali Metal Cation Exchanged Zeolite X by Inelastic Neutron Scattering , 2004 .

[258]  G. Kearley,et al.  The vibrational spectrum of magnesium hydride from inelastic neutron scattering and density functional theory , 2004 .

[259]  Craig M. Brown,et al.  Origin and removal of spurious background peaks in vibrational spectra measured by filter-analyzer neutron spectrometers , 2004 .

[260]  Juergen Eckert,et al.  The nature of the surface species formed on Au/TiO2 during the reaction of H2 and O2: an inelastic neutron scattering study. , 2004, Journal of the American Chemical Society.

[261]  A. Soper,et al.  Scientific Reviews: GEM: The General Materials Diffractometer at ISIS-Multibank Capabilities for Studying Crystalline and Disordered Materials , 2004 .

[262]  Bert M. Weckhuysen,et al.  Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword , 2003 .

[263]  Toshinori Mori,et al.  Neutron scattering study on the dynamics of water molecules adsorbed on SrF2 and ZnO surfaces , 2002 .

[264]  M. Bañares,et al.  Molecular structures of supported metal oxide catalysts under different environments , 2002 .

[265]  J. Lunsford,et al.  Evidence for the Role of Colloidal Palladium in the Catalytic Formation of H2O2 from H2 and O2 , 2002 .

[266]  K. Wong,et al.  Insertion and Removal of Protons in Single-Crystal Orthorhombic Molybdenum Trioxide under H2S/H2 and O2/N2 , 2002 .

[267]  Martin T. Dove,et al.  Neutron total scattering method: simultaneous determination of long-range and short-range order in disordered materials , 2002 .

[268]  David L. Price,et al.  Neutron scattering study of H2 adsorption in single-walled carbon nanotubes , 2001 .

[269]  C. Catlow,et al.  Probing the Nature of Acetylene Bound to the Active Site of a NiNa−Zeolite Y Catalyst by in situ Neutron Scattering , 2000 .

[270]  H. Jobic,et al.  Powder Neutron and X-ray Diffraction Studies of Benzene Adsorbed in Zeolite ZSM-5 , 2000 .

[271]  E. Kümmerle,et al.  The Structures of C–Ce2O3+δ, Ce7O12, and Ce11O20 , 1999 .

[272]  W. David,et al.  On apparatus for studying catalysts and catalytic processes using neutron scattering , 1999 .

[273]  H. Jobic,et al.  Diffusion of Isobutane in ZSM-5 Zeolite: A Comparison of Quasi-Elastic Neutron Scattering and Supported Membrane Results , 1999 .

[274]  K. Herwig,et al.  Quasielastic neutron scattering and molecular dynamics simulation studies of the melting transition in butane and hexane monolayers adsorbed on graphite , 1997 .

[275]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[276]  F. Trouw,et al.  Adsorption of Hydrogen in Ca-Exchanged Na-A Zeolites Probed by Inelastic Neutron Scattering Spectroscopy , 1996 .

[277]  B. Kennedy Oxygen Vacancies in Pyrochlore Oxides: Powder Neutron Diffraction Study of Pb2Ir2O6.5and Bi2Ir2O7−y , 1996 .

[278]  S. Parker Vibrational spectroscopy of N-phenylmaleimide. , 1995, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[279]  Abhaya K. Datye,et al.  Activation of Precipitated Iron Fischer-Tropsch Synthesis Catalysts , 1995 .

[280]  C. Rao,et al.  A Simple Method of Hydrogen Insertion in Transition Metal Oxides to Obtain Bronzes , 1995 .

[281]  K. Ernst,et al.  The interaction of hydrogen with a cobalt(101̄0) surface , 1994 .

[282]  Jens R. Rostrup-Nielsen,et al.  CO2-Reforming of Methane over Transition Metals , 1993 .

[283]  C. Mirodatos,et al.  Identification of new hydrogen species adsorbed on ruthenium sulfide by neutron spectroscopy , 1993 .

[284]  A. Cheetham,et al.  Synchrotron X‐ray and Neutron Diffraction Studies in Solid‐State Chemistry , 1992 .

[285]  R. Hughes,et al.  A small-angle neutron scattering investigation of coke deposits on catalysts , 1990 .

[286]  G. Kearley,et al.  Translational and rotational dynamics of methane in ZSM-5 zeolite: A quasi-elastic neutron scattering study , 1989 .

[287]  K. Eda,et al.  Preparation and Characterization of Hydrogen Molybdenum Bronzes, HxMoO3 , 1989 .

[288]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[289]  B. Tatarchuk,et al.  Neutron scattering study of hydrogen on ruthenium sulfide , 1988 .

[290]  P. Hirst,et al.  Inelastic neutron scattering spectra of hydrogen and ammonium insertion compounds of metal oxides MO3 (M=Mo and/or W) , 1988 .

[291]  A. Ramanan,et al.  Synthesis, characterization and inelastic neutron scattering spectra of hydrogen insertion compounds of the mixed VMo oxide V9Mo6O40 , 1988 .

[292]  M. Bienfait Surface Premelting of CH4 Thin Films , 1987 .

[293]  J. Coulomb,et al.  Diffusivity of a two-dimensional lattice fluid: CH4 adsorbed on MgO(100) , 1987 .

[294]  P. Dickens,et al.  Thermochemistry of the hydrogen insertion compounds formed by the molybdic and tungstic acids HxMO3·nH2O (M=Mo, n=1; M=W, n=1,2) , 1987 .

[295]  P. Dickens,et al.  Hydrogen insertion in oxides , 1986 .

[296]  A. Cheetham,et al.  Localizing active sites in zeolitic catalysts: neutron powder profile analysis and computer simulation of deuteropyridine bound to gallozeolite-L , 1985, Nature.

[297]  P. Dickens,et al.  Hydrogen insertion compounds of the molybdic acids, MoO3·nH2O (n = 1, 2) , 1984 .

[298]  H. Jobic,et al.  Inelastic neutron scattering spectroscopy of hydrogen adsorbed on Raney nickel , 1984 .

[299]  N. Sheppard,et al.  Vibrational Spectra of Species Adsorbed on Surfaces: Forms of Vibrations and Selection Rules for Regular Arrays of Adsorbed Species , 1984 .

[300]  J. Tomkinson,et al.  Spectroscopic studies of hydrogen adsorbed on zinc oxide (kadox 25) , 1984 .

[301]  P. Dickens,et al.  Hydrogen insertion compounds of V6O13 and V2O5 , 1984 .

[302]  P. Dickens,et al.  Studies of some hydrogen rhenium bronzes , 1983 .

[303]  P. Dickens,et al.  The structure of a cubic hydrogen rhenium bronze, H1.36ReO3 , 1983 .

[304]  J. Coulomb,et al.  Mobility measurements of two kinds of two-dimensional fluids. Methane adsorbed on graphite (*) , 1981 .

[305]  J. Niemantsverdriet,et al.  Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements , 1980 .

[306]  P. Dickens,et al.  Elastic and inelastic neutron studies of hydrogen molybdenum bronzes , 1979 .

[307]  N. Thiele,et al.  Formation and Decomposition of Nitrides on Iron Surfaces , 1979 .

[308]  E. Borello,et al.  Infrared study of ZnO surface properties: I. Hydrogen and deuterium chemisorption at room temperature , 1978 .

[309]  T. C. Waddington,et al.  An inelastic neutron scattering study of C2H2 adsorbed on type 13X zeolites , 1977 .

[310]  P. Fouilloux,et al.  Diffusion of Chemisorbed Hydrogen on a Nickel Catalyst , 1977 .

[311]  R. Stockmeyer Zur Bestimmung der Beweglichkeit von Kohlenwasserstoffmolekülen auf Katalysatoroberflächen mittels Neutronenstreuung , 1976 .

[312]  A. Cheetham,et al.  A neutron diffraction study of the hydrides of the early lanthanide elements at room temperature , 1974 .

[313]  M. Sienko,et al.  Infrared and electron spin resonance study of hydrogen tungsten bronze , 1968 .

[314]  H. Lindlar Ein neuer Katalysator für selektive Hydrierungen , 1952 .

[315]  J. Chadwick,et al.  The existence of a neutron , 1932 .

[316]  B. Fåk,et al.  Panther — the new thermal neutron time-of-flight spectrometer at the ILL , 2022, EPJ Web of Conferences.

[317]  Ping Chen,et al.  Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. , 2017, Nature chemistry.

[318]  E. Mamontov,et al.  Microscopic relaxations in a protein sustained down to 160K in a non-glass forming organic solvent. , 2017, Biochimica et biophysica acta. General subjects.

[319]  L. Daemen,et al.  Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions , 2016 .

[320]  Anders Kaestner,et al.  Improving the Spatial Resolution of Neutron Imaging at Paul Scherrer Institut - The Neutron Microscope Project , 2015 .

[321]  Jack S. Brenizer,et al.  A Review of Significant Advances in Neutron Imaging from Conception to the Present , 2013 .

[322]  K. C. Waugh Methanol Synthesis , 2012, Catalysis Letters.

[323]  J. Alonso,et al.  Neutron powder diffraction as a characterization tool of solid oxide fuel cell materials , 2008 .

[324]  L. Vlček,et al.  Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations. , 2007 .

[325]  S. C. Rogers,et al.  Assignment of the complex vibrational spectra of the hydrogenated ZnO polar surfaces using QM/MM embedding , 2003 .

[326]  Anilesh Kumar,et al.  Diffusion of Propane in Zeolite NaY: A Molecular Dynamics and Quasi-Elastic Neutron Scattering Study , 2003 .

[327]  J. R. Phillips,et al.  An inelastic neutron scattering spectroscopic investigation of the adsorption of ethene and propene on carbon , 2000 .

[328]  C. Jacobsen Novel class of ammonia synthesis catalysts , 2000 .

[329]  A. C. Evans,et al.  Hydrogen in molybdenum and cobalt sulfide catalysts. A neutron compton scattering study on the ISIS electronvolt spectrometer , 1995 .

[330]  V. F. Sears Neutron scattering lengths and cross sections , 1992 .

[331]  P. Dickens,et al.  Inelastic neutron scattering spectra of HxUO3 , 1992 .

[332]  J. Eckert,et al.  Rotational tunneling of bound H2 in a tungsten complex , 1988 .

[333]  Alexis T. Bell,et al.  Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts , 1986 .

[334]  D. Graham,et al.  Adsorption of benzene on platinum black: a neutron scattering study , 1984 .

[335]  C. Wright Inelastic neutron scattering spectra of the hydrogen tungsten bronze H0.4WO3 , 1977 .

[336]  Thomas Graham,et al.  XVIII. On the absorption and dialytic separation of gases by colloid septa , 1866, Philosophical Transactions of the Royal Society of London.

[337]  Role of Low-Coordinated Ce in Hydride Formation and Selective Hydrogenation Reactions on CeO2 Surfaces , 2022 .