Controlling chaotic solitons in Frenkel-Kontorova chains by disordered driving forces.

We discuss a general mechanism explaining the taming effect of phase disorder in external forces on chaotic solitons in damped, driven, Frenkel-Kontorova chains. We deduce analytically an effective random equation of motion governing the dynamics of the soliton center of mass for which we obtain numerically the regions in the control parameter space where chaotic solitons are suppressed. We find that such predictions are in excellent agreement with results of computer simulations of the original Frenkel-Kontorova chains. We show theoretically how such a fundamental mechanism explains recent numerical results concerning extended chaos in arrays of coupled pendula [S. F. Brandt, Phys. Rev. Lett. 96, 034104 (2006)10.1103/PhysRevLett.96.034104].

[1]  J. L. Hudson,et al.  Experiments on arrays of globally coupled chaotic electrochemical oscillators: Synchronization and clustering. , 2000, Chaos.

[2]  W. Ditto,et al.  Taming spatiotemporal chaos with disorder , 1995, Nature.

[3]  Willis,et al.  Sine-Gordon kinks on a discrete lattice. I. Hamiltonian formalism. , 1986, Physical review. B, Condensed matter.

[4]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[5]  Barashenkov,et al.  Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators , 1999, Physical review letters.

[6]  New characterization of disorder taming spatiotemporal chaos , 2003, nlin/0301022.

[7]  Zhonghuai Hou,et al.  Ordering chaos by random shortcuts. , 2003, Physical review letters.

[8]  Vassilios Kovanis,et al.  Spatiotemporal organization of coupled nonlinear pendula through impurities , 1998 .

[9]  L. Floría,et al.  Dissipative dynamics of the Frenkel-Kontorova model , 1996 .

[10]  R. Chacón Controlling chaos with localized heterogeneous forces in oscillator chains. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Cirillo,et al.  Fluxon dynamics in one-dimensional Josephson-junction arrays. , 1993, Physical review. B, Condensed matter.

[12]  John F. Lindner,et al.  OPTIMAL DISORDERS FOR TAMING SPATIOTEMPORAL CHAOS , 1996 .

[13]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model , 2004 .

[14]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  Ralf Wessel,et al.  Synchronization from disordered driving forces in arrays of coupled oscillators. , 2005, Physical review letters.

[16]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[17]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[18]  Steven H. Strogatz,et al.  Ordering chaos with disorder , 1995, Nature.

[19]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[20]  Pedersen,et al.  Prediction of chaos in a Josephson junction by the Melnikov-function technique. , 1986, Physical review. B, Condensed matter.

[21]  Chaos transition of soliton motion on a microstructured lattice , 1992 .

[22]  R. Chacón,et al.  Taming chaotic solitons in Frenkel-Kontorova chains by weak periodic excitations. , 2004, Physical review letters.

[23]  Wiesenfeld,et al.  Synchronization transitions in a disordered Josephson series array. , 1996, Physical review letters.

[24]  Taming chaos by impurities in two-dimensional oscillator arrays. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  A. Winfree The geometry of biological time , 1991 .

[26]  Suppressing temporal and spatio-temporal chaos by multiple weak resonant excitations: Application to arrays of chaotic coupled oscillators , 2003 .