Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG
暂无分享,去创建一个
[1] B. Parlett,et al. Relatively robust representations of symmetric tridiagonals , 2000 .
[2] Gérard Meurant. The computation of bounds for the norm of the error in the conjugate gradient algorithm , 2004, Numerical Algorithms.
[3] G. Golub,et al. Bounds for the error in linear systems , 1979 .
[4] M. Gutknecht,et al. Residual Smoothing Techniques: Do They Improve the Limiting Accuracy of Iterative Solvers? , 1999 .
[5] Iain S. Duff,et al. Stopping Criteria for Iterative Solvers , 1992, SIAM J. Matrix Anal. Appl..
[6] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[7] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[8] J. L. Rigal,et al. On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.
[9] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[10] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[11] G. Golub,et al. Bounds for the error of linear systems of equations using the theory of moments , 1972 .
[12] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[13] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[14] Miroslav Rozlozník,et al. By How Much Can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods? , 2001, Numerical Algorithms.
[15] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[16] Miroslav Tuma,et al. On Incremental Condition Estimators in the 2-Norm , 2014, SIAM J. Matrix Anal. Appl..
[17] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[18] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[19] C. Bischof. Incremental condition estimation , 1990 .
[20] Gene H. Golub,et al. Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.
[21] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[22] G. Golub,et al. On the Error Computation for Polynomial Based Iteration Methods , 1994 .
[23] Gérard Meurant,et al. Erratum to: On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2014, Numer. Algorithms.
[24] Iain S. Duff,et al. Incremental Norm Estimation for Dense and Sparse Matrices , 2002 .
[25] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[26] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[27] W. Prager,et al. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .
[28] Gérard Meurant,et al. On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.