Using the flatness of DC-Drives to emulate a generator for a decoupled MPC using a geometric approach for motion control in Robotino
暂无分享,去创建一个
[1] A. Isidori. Nonlinear Control Systems: An Introduction , 1986 .
[2] Domenico Prattichizzo,et al. On some geometric control properties of active suspensions systems , 2000, Kybernetika.
[3] W. Murray Wonham. Disturbance Decoupling and Output Stabilization , 1979 .
[4] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[5] G. Basile,et al. Controlled and conditioned invariants in linear system theory , 1992 .
[6] Domenico Prattichizzo,et al. A geometric procedure for robust decoupling control of contact forces in robotic manipulation , 2003, Kybernetika.
[7] Paolo Mercorelli,et al. Invariant subspaces for grasping internal forces and non-interacting force-motion control in robotic manipulation , 2012, Kybernetika.
[8] A. Morse,et al. Decoupling and pole assignment by dynamic compensation , 1970 .
[9] A. Morse,et al. Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .
[10] Xiaoping Yun,et al. Effect of the dynamic interaction on coordinated control of mobile manipulators , 1996, IEEE Trans. Robotics Autom..