Bio-Inspired Credit Risk Analysis

[1]  Kin Keung Lai,et al.  Credit risk assessment with a multistage neural network ensemble learning approach , 2008, Expert Syst. Appl..

[2]  Bart Baesens,et al.  Comprehensible Credit Scoring Models Using Rule Extraction from Support Vector Machines , 2007, Eur. J. Oper. Res..

[3]  Mu-Chen Chen,et al.  Credit scoring with a data mining approach based on support vector machines , 2007, Expert Syst. Appl..

[4]  Minghui Jiang,et al.  Construction and Application of PSO-SVM Model for Personal Credit Scoring , 2007, International Conference on Computational Science.

[5]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[6]  Qi Fei,et al.  A comparative study of data mining methods in consumer loans credit scoring management , 2006 .

[7]  Kin Keung Lai,et al.  Multistage Neural Network Metalearning with Application to Foreign Exchange Rates Forecasting , 2006, MICAI.

[8]  Kin Keung Lai,et al.  A Reliability-Based RBF Network Ensemble Model for Foreign Exchange Rates Predication , 2006, ICONIP.

[9]  Liang Gao,et al.  Credit Scoring Model Based on Neural Network with Particle Swarm Optimization , 2006, ICNC.

[10]  Hewijin Christine Jiau,et al.  Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem , 2006 .

[11]  Chenguang Yang,et al.  Credit Risk Assessment in Commercial Banks Based on Multi-layer SVM Classifier , 2006, ICIC.

[12]  Kin Keung Lai,et al.  Neural Network Metalearning for Credit Scoring , 2006, ICIC.

[13]  Kin Keung Lai,et al.  Credit Risk Evaluation with Least Square Support Vector Machine , 2006, RSKT.

[14]  Lean Yu,et al.  A New Method for Crude Oil Price Forecasting Based on Support Vector Machines , 2006, International Conference on Computational Science.

[15]  Kin Keung Lai,et al.  A Bias-Variance-Complexity Trade-Off Framework for Complex System Modeling , 2006, ICCSA.

[16]  Sheng-Tun Li,et al.  The evaluation of consumer loans using support vector machines , 2006, Expert Syst. Appl..

[17]  Jih-Jeng Huang,et al.  Two-stage genetic programming (2SGP) for the credit scoring model , 2006, Appl. Math. Comput..

[18]  Kin Keung Lai,et al.  An integrated data preparation scheme for neural network data analysis , 2006, IEEE Transactions on Knowledge and Data Engineering.

[19]  Ralf Stecking,et al.  Selecting SVM Kernels and Input Variable Subsets in Credit Scoring Models , 2006, GfKl.

[20]  Ralf Stecking,et al.  Combining Support Vector Machines for Credit Scoring , 2006, OR.

[21]  Kin Keung Lai,et al.  A new fuzzy support vector machine to evaluate credit risk , 2005, IEEE Transactions on Fuzzy Systems.

[22]  Kin Keung Lai,et al.  A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates , 2005, Comput. Oper. Res..

[23]  Bart Baesens,et al.  A Comprehensible SOM-Based Scoring System , 2005, MLDM.

[24]  David J. Hand,et al.  A survey of the issues in consumer credit modelling research , 2005, J. Oper. Res. Soc..

[25]  Malcolm J. Beynon,et al.  A method of aggregation in DS/AHP for group decision-making with the non-equivalent importance of individuals in the group , 2005, Comput. Oper. Res..

[26]  C ONG,et al.  Building credit scoring models using genetic programming , 2005, Expert Syst. Appl..

[27]  Ralf Stecking,et al.  Support vector machines for classifying and describing credit applicants: detecting typical and critical regions , 2005, J. Oper. Res. Soc..

[28]  Bart Baesens,et al.  Neural network survival analysis for personal loan data , 2005, J. Oper. Res. Soc..

[29]  Tian-Shyug Lee,et al.  A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines , 2005, Expert Syst. Appl..

[30]  Bogdan Gabrys,et al.  Classifier selection for majority voting , 2005, Inf. Fusion.

[31]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[32]  Yigui Ou,et al.  A SUPERLINEARLY CONVERGENT TRUST REGION ALGORITHM FOR LC 1 CONSTRAINED OPTIMIZATION PROBLEMS , 2005 .

[33]  Ralf Stecking,et al.  Support Vector Machines for Credit Scoring: Extension to Non Standard Cases , 2005 .

[34]  Ralf Stecking,et al.  Variable Subset Selection for Credit Scoring with Support Vector Machines , 2005, OR.

[35]  Cheng-Lin Liu,et al.  Classifier combination based on confidence transformation , 2005, Pattern Recognit..

[36]  Kyung-shik Shin,et al.  An application of support vector machines in bankruptcy prediction model , 2005, Expert Syst. Appl..

[37]  Antony Browne,et al.  Neural network ensembles: combining multiple models for enhanced performance using a multistage approach , 2004, Expert Syst. J. Knowl. Eng..

[38]  Nan-Chen Hsieh,et al.  An integrated data mining and behavioral scoring model for analyzing bank customers , 2004, Expert Syst. Appl..

[39]  Renpu Li,et al.  Mining classification rules using rough sets and neural networks , 2004, Eur. J. Oper. Res..

[40]  Geoffrey I. Webb,et al.  Multistrategy ensemble learning: reducing error by combining ensemble learning techniques , 2004, IEEE Transactions on Knowledge and Data Engineering.

[41]  De-Shuang Huang,et al.  Least squares support vector machine ensemble , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[42]  Jianping Li,et al.  Support Vector Machines Approach to Credit Assessment , 2004, International Conference on Computational Science.

[43]  William Nick Street,et al.  An intelligent system for customer targeting: a data mining approach , 2004, Decis. Support Syst..

[44]  Chengyi Xiong,et al.  Novel algorithm for image interpolation , 2004 .

[45]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[46]  Ning Zhong,et al.  Using Rough Sets with Heuristics for Feature Selection , 1999, Journal of Intelligent Information Systems.

[47]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[48]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[49]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[50]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[51]  Bart Baesens,et al.  Comprehensible Credit-Scoring Knowledge Visualization Using Decision Tables and Diagrams , 2004, ICEIS.

[52]  C.A.M. Lima,et al.  GA-based selection of components for heterogeneous ensembles of support vector machines , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[53]  Hyun-Chul Kim,et al.  Constructing support vector machine ensemble , 2003, Pattern Recognit..

[54]  Jie Lu,et al.  An Integrated Group Decision-Making Method Dealing with Fuzzy Preferences for Alternatives and Individual Judgments for Selection Criteria , 2003 .

[55]  Martin Schader,et al.  Between Data Science and Applied Data Analysis , 2003 .

[56]  Kyoung-jae Kim,et al.  Financial time series forecasting using support vector machines , 2003, Neurocomputing.

[57]  Susan E. Bedingfield,et al.  Predicting Bad Credit Risk: An Evolutionary Approach , 2003, ICANN.

[58]  Shigeo Abe,et al.  Fuzzy least squares support vector machines for multiclass problems , 2003, Neural Networks.

[59]  Mu-Chen Chen,et al.  Credit scoring and rejected instances reassigning through evolutionary computation techniques , 2003, Expert Syst. Appl..

[60]  Robert P. W. Duin,et al.  Limits on the majority vote accuracy in classifier fusion , 2003, Pattern Analysis & Applications.

[61]  Johan A. K. Suykens,et al.  Bankruptcy prediction with least squares support vector machine classifiers , 2003, 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings..

[62]  Andrzej Skowron,et al.  Rough set methods in feature selection and recognition , 2003, Pattern Recognit. Lett..

[63]  Bart Baesens,et al.  Using Neural Network Rule Extraction and Decision Tables for Credit - Risk Evaluation , 2003, Manag. Sci..

[64]  Ralf Stecking,et al.  Support Vector Machines for Credit Scoring: Comparing to and Combining With Some Traditional Classification Methods , 2003 .

[65]  B. Baesens,et al.  A support vector machine approach to credit scoring , 2003 .

[66]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[67]  Chih-Chou Chiu,et al.  Credit scoring using the hybrid neural discriminant technique , 2002, Expert Syst. Appl..

[68]  Johan A. K. Suykens,et al.  Weighted least squares support vector machines: robustness and sparse approximation , 2002, Neurocomputing.

[69]  Guido Smits,et al.  Improved SVM regression using mixtures of kernels , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[70]  Ludmila I. Kuncheva,et al.  Relationships between combination methods and measures of diversity in combining classifiers , 2002, Inf. Fusion.

[71]  Ludmila I. Kuncheva,et al.  Switching between selection and fusion in combining classifiers: an experiment , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[72]  Sheng-De Wang,et al.  Fuzzy support vector machines , 2002, IEEE Trans. Neural Networks.

[73]  Ludmila I. Kuncheva,et al.  A Theoretical Study on Six Classifier Fusion Strategies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  S. Uryasev,et al.  Credit cards scoring with quadratic utility functions , 2002 .

[75]  Rashmi Malhotra,et al.  Differentiating between Good Credits and Bad Credits Using Neuro-Fuzzy Systems , 2001, Eur. J. Oper. Res..

[76]  Kagan Tumer,et al.  Robust Combining of Disparate Classifiers through Order Statistics , 1999, Pattern Analysis & Applications.

[77]  Nadine Meskens,et al.  A comparison of rough sets and recursive partitioning induction approaches : an application to commercial loans , 2002 .

[78]  Malcolm J. Beynon,et al.  Reducts within the variable precision rough sets model: A further investigation , 2001, Eur. J. Oper. Res..

[79]  F. Tay,et al.  Application of support vector machines in financial time series forecasting , 2001 .

[80]  R. Malhotra,et al.  Evaluating Consumer Loans Using Neural Networks , 2001 .

[81]  Lakhmi C. Jain,et al.  Designing classifier fusion systems by genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[82]  David West,et al.  Neural network credit scoring models , 2000, Comput. Oper. Res..

[83]  James T. Kwok,et al.  The evidence framework applied to support vector machines , 2000, IEEE Trans. Neural Networks Learn. Syst..

[84]  Ching Y. Suen,et al.  Multiple Classifier Combination Methodologies for Different Output Levels , 2000, Multiple Classifier Systems.

[85]  J. Crook,et al.  Credit scoring using neural and evolutionary techniques , 2000 .

[86]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[87]  Byeong Seok Ahn,et al.  The integrated methodology of rough set theory and artificial neural network for business failure prediction , 2000 .

[88]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[89]  Mineichi Kudo,et al.  Comparison of algorithms that select features for pattern classifiers , 2000, Pattern Recognit..

[90]  S. Sathiya Keerthi,et al.  A fast iterative nearest point algorithm for support vector machine classifier design , 2000, IEEE Trans. Neural Networks Learn. Syst..

[91]  Toshimitsu Ushio,et al.  Rule induction from inconsistent and incomplete data using rough sets , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[92]  Leo Breiman,et al.  Prediction Games and Arcing Algorithms , 1999, Neural Computation.

[93]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[94]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[95]  Xuegong Zhang,et al.  Using class-center vectors to build support vector machines , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[96]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[97]  Selwyn Piramuthu,et al.  Financial credit-risk evaluation with neural and neurofuzzy systems , 1999, Eur. J. Oper. Res..

[98]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .

[99]  Franco Varetto Genetic algorithms applications in the analysis of insolvency risk , 1998 .

[100]  Albrecht Irion,et al.  Fuzzy rules and fuzzy functions: A combination of logic and arithmetic operations for fuzzy numbers , 1998, Fuzzy Sets Syst..

[101]  Nello Cristianini,et al.  The Kernel-Adatron Algorithm: A Fast and Simple Learning Procedure for Support Vector Machines , 1998, ICML.

[102]  Francisco Herrera,et al.  Combining Numerical and Linguistic Information in Group Decision Making , 1998, Inf. Sci..

[103]  Jaap Spronk,et al.  The Application of the Multi-Factor Model in the Analysis of Corporate Failure , 1998 .

[104]  V. Vapnik The Support Vector Method of Function Estimation , 1998 .

[105]  Johan A. K. Suykens,et al.  Nonlinear modeling : advanced black-box techniques , 1998 .

[106]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[107]  Pedro M. Domingos,et al.  How to Get a Free Lunch: A Simple Cost Model for Machine Learning Applications , 1998 .

[108]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[109]  William V. Gehrlein,et al.  A two-stage least cost credit scoring model , 1997, Ann. Oper. Res..

[110]  Jonathan Crook,et al.  Credit Scoring Models in the Credit Union Environment Using Neural Networks and Genetic Algorithms , 1997 .

[111]  David J. Hand,et al.  Construction of a k-nearest-neighbour credit-scoring system , 1997 .

[112]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[113]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[114]  G. Terrell,et al.  Iterated grid search algorithm on unimodal criteria , 1997 .

[115]  Josef Kittler,et al.  Combining classifiers , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[116]  Constantin Zopounidis,et al.  A survey of business failures with an emphasis on prediction methods and industrial applications , 1996 .

[117]  D. Hand,et al.  A k-nearest-neighbour classifier for assessing consumer credit risk , 1996 .

[118]  Krzysztof J. Cios,et al.  Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model , 1996, Neurocomputing.

[119]  Soung Hie Kim,et al.  A note on the fuzzy weighted additive rule , 1996, Fuzzy Sets Syst..

[120]  Ilona Jagielska,et al.  Neural network for predicting the performance of credit card accounts , 1996 .

[121]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[122]  Joachim Diederich,et al.  Survey and critique of techniques for extracting rules from trained artificial neural networks , 1995, Knowl. Based Syst..

[123]  Wojciech Ziarko,et al.  INTRODUCTION TO THE SPECIAL ISSUE ON ROUGH SETS AND KNOWLEDGE DISCOVERY , 1995, Comput. Intell..

[124]  R. Yager Aggregation operators and fuzzy systems modeling , 1994 .

[125]  Andrzej Skowron,et al.  Dynamic Reducts as a Tool for Extracting Laws from Decisions Tables , 1994, ISMIS.

[126]  Constantin Zopounidis,et al.  An integrated DSS for financing firms by an industrial development bank in Greece , 1994, Decis. Support Syst..

[127]  Eric Rosenberg,et al.  Quantitative Methods in Credit Management: A Survey , 1994, Oper. Res..

[128]  Cullen Schaffer,et al.  A Conservation Law for Generalization Performance , 1994, ICML.

[129]  Jude W. Shavlik,et al.  Using Sampling and Queries to Extract Rules from Trained Neural Networks , 1994, ICML.

[130]  Michael Conrad,et al.  Combining evolution with credit apportionment: A new learning algorithm for neural nets , 1994, Neural Networks.

[131]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[132]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[133]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[134]  Herbert L. Jensen,et al.  Using Neural Networks for Credit Scoring , 1992 .

[135]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[136]  R. Ramakrishnan,et al.  The fuzzy weighted additive rule , 1992 .

[137]  Chris Bishop,et al.  Improving the Generalization Properties of Radial Basis Function Neural Networks , 1991, Neural Computation.

[138]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[139]  K. Keasey,et al.  Financial Distress Prediction Models: A Review of Their Usefulness1 , 1991 .

[140]  D. Fogel System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[141]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[142]  Erkki K. Laitinen,et al.  Survival analysis as a tool for company failure prediction , 1991 .

[143]  Sheng Chen,et al.  Non-linear systems identification using radial basis functions , 1990 .

[144]  Fred Glover,et al.  IMPROVED LINEAR PROGRAMMING MODELS FOR DISCRIMINANT ANALYSIS , 1990 .

[145]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[146]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[147]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[148]  A. Steenackers,et al.  A credit scoring model for personal loans , 1989 .

[149]  R. Fletcher Practical Methods of Optimization , 1988 .

[150]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[151]  Chris Carter,et al.  Assessing Credit Card Applications Using Machine Learning , 1987, IEEE Expert.

[152]  Gerardine DeSanctis,et al.  A foundation for the study of group decision support systems , 1987 .

[153]  F Jones,et al.  CURRENT TECHNIQUES IN BANKRUPTCY PREDICTION , 1987 .

[154]  I. Jolliffe Principal Component Analysis , 2005 .

[155]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[156]  W. Cholewa Aggregation of fuzzy opinions — an axiomatic approach , 1985 .

[157]  H. Frydman,et al.  Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress , 1985 .

[158]  G. Bortolan,et al.  A review of some methods for ranking fuzzy subsets , 1985 .

[159]  M. Zmijewski METHODOLOGICAL ISSUES RELATED TO THE ESTIMATION OF FINANCIAL DISTRESS PREDICTION MODELS , 1984 .

[160]  C. Zavgren,et al.  The prediction of corporate failure: The state of the art , 1983 .

[161]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[162]  J. Wiginton A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior , 1980, Journal of Financial and Quantitative Analysis.

[163]  Donald R. Cooper,et al.  Business Research Methods , 1980 .

[164]  Rolph E. Anderson,et al.  Multivariate Data Analysis with Readings , 1979 .

[165]  V. N. Malozemov,et al.  Finding the Point of a Polyhedron Closest to the Origin , 1974 .

[166]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[167]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[168]  Samprit Chatterjee,et al.  A Nonparametric Approach to Credit Screening , 1970 .

[169]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[170]  W. Beaver Financial Ratios As Predictors Of Failure , 1966 .

[171]  O. Mangasarian Linear and Nonlinear Separation of Patterns by Linear Programming , 1965 .

[172]  James H. Myers,et al.  The Development of Numerical Credit Evaluation Systems , 1963 .

[173]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .