Highly red luminescent Nb2O5:Eu3+ nanoparticles in silicate host for solid-state lighting and energy conversion

[1]  Shahzad Ahmad,et al.  Elucidating the structure and optimising the photoluminescence properties of Sr2Al3O6F: Eu3+ oxyfluorides for cool white-LEDs , 2020 .

[2]  Nan Liu,et al.  Positive effects in perovskite solar cells achieved using down-conversion NaEuF4 nanoparticles , 2020 .

[3]  H. Brito,et al.  Odd-Even Effect on Luminescence Properties of Europium Aliphatic Dicarboxylate Complexes. , 2019, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Mingmei Wu,et al.  A promising europium-based down conversion material: organic–inorganic perovskite solar cells with high photovoltaic performance and UV-light stability , 2019, Journal of Materials Chemistry A.

[5]  Jihuai Wu,et al.  Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF4:Eu3+ nanophosphors , 2019, Journal of Materials Chemistry C.

[6]  T. R. A. Thara,et al.  Narrow-band red-emitting phosphor, Gd3Zn2Nb3O14:Eu3+ with high color purity for phosphor-converted white light emitting diodes , 2018 .

[7]  S. Ribeiro,et al.  Luminescent Eu 3+ doped Al 6 Ge 2 O 13 crystalline compounds obtained by the sol gel process for photonics , 2018 .

[8]  R. Gonçalves,et al.  The influence of Nb2O5 crystallization on the infrared-to-visible upconversion in Er3+/Yb3+ co-doped SiO2-Nb2O5 nanocomposites , 2017 .

[9]  R. Gonçalves,et al.  Niobium oxide influence on the structural properties and NIR luminescence of Er3+/Yb3+ co-doped and single-doped 1−xSiO2−xNb2O5 nanocomposites prepared by an alternative sol–gel route , 2016 .

[10]  R. Gonçalves,et al.  Broad and intense NIR luminescence from rare earth doped SiO2–Nb2O5 glass and glass ceramic prepared by a new sol gel route , 2016 .

[11]  S. Ribeiro,et al.  Near infrared emission and multicolor tunability of enhanced upconversion emission from Er3+-Yb3+ co-doped Nb2O5 nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics , 2016 .

[12]  R. Longo,et al.  On the calculation and interpretation of covalency in the intensity parameters of 4f–4f transitions in Eu3+ complexes based on the chemical bond overlap polarizability , 2016 .

[13]  P. Goldner,et al.  Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications , 2016 .

[14]  H. Brito,et al.  Highly luminescent Eu3+-doped benzenetricarboxylate based materials , 2016 .

[15]  K. Binnemans Interpretation of europium(III) spectra , 2015 .

[16]  S. Ribeiro,et al.  Unusual broadening of the NIR luminescence of Er3+-doped Nb2O5 nanocrystals embedded in silica host: Preparation and their structural and spectroscopic study for photonics applications , 2014 .

[17]  S. Ribeiro,et al.  Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials , 2014 .

[18]  L. Carlos,et al.  White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex , 2014 .

[19]  J. Yu,et al.  Synthesis and luminescence properties of Eu3+ doped BaGd2Ti4O13 phosphors , 2014 .

[20]  Philippe Goldner,et al.  Broadband NIR emission in novel sol–gel Er3+-doped SiO2–Nb2O5 glass ceramic planar waveguides for photonic applications , 2013 .

[21]  C. K. Jayasankar,et al.  Probing the structure, morphology and multifold blue absorption of a new red-emitting nanophosphor for LEDs , 2012, 1208.3135.

[22]  Yung-Tang Nien,et al.  Enhancement of Photoluminescence and Color Purity of CaTiO3:Eu Phosphor by Li Doping , 2012 .

[23]  K. Kukli,et al.  Evaluation and Comparison of Novel Precursors for Atomic Layer Deposition of Nb2O5 Thin Films , 2012 .

[24]  Jean-Claude G Bünzli,et al.  Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates). , 2009, Physical chemistry chemical physics : PCCP.

[25]  Rute A. S. Ferreira,et al.  Lanthanide‐Containing Light‐Emitting Organic–Inorganic Hybrids: A Bet on the Future , 2009, Advanced materials.

[26]  M. Gaft,et al.  Europium probe for estimation of site symmetry in glass films, glasses and crystals , 2004 .

[27]  J. Verhoeven,et al.  The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes , 2002 .

[28]  M. Ziolek,et al.  Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. , 1999, Chemical reviews.

[29]  K. Binnemans,et al.  Application of the Eu3+ ion for site symmetry determination , 1996 .

[30]  R. Reisfeld,et al.  Transition probabilities of europium in phosphate glasses , 1971 .

[31]  Robert A. Satten,et al.  Spectra and energy levels of rare earth ions in crystals , 1968 .

[32]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[33]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .